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Chirality

Object and its mirror image 
are non-superimposable • Chirality in DNA

– Chiral
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In particle physics, 

Chirality = Helicity for massless particles

𝒑
𝒔

𝒑
𝒔

Chirality

chirality related to inherent quantum properties

Left-handed Right-handed
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Chiral symmetry broken 
in the QCD vacuum
➡ chiral condensates
➡ “massive” quarks

Chiral symmetry in QCD

4

account for 99% of 
the hadron mass

“Vacuum”



Chiral symmetry broken 
in the QCD vacuum
➡ chiral condensates
➡ “massive” quarks

Chiral symmetry in QCD

Chiral symmetry expected to restored at high 
temperature (≳154 MeV from lattice),

“Vacuum”

➡ quarks becomes nearly “massless” or “chiral”
4

account for 99% of 
the hadron mass



Gauge field and topological charges

(T = 0)
(T	≠ 0)

Chern-Simons
number

Topological charges (or winding number): 

Qw	~	𝑬) * 𝑩) – parity violating!
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Topological charge fluctuations in QCD vacuum

Lattice simulation from D Leinweber, Univ. of Adelaide
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Topological charge fluctuations in QCD vacuum
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Qw≠0

In a local domain
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Topological charge fluctuations in QCD vacuum

Lattice simulation from D Leinweber, Univ. of Adelaide

If coupled to 
chiral massless quarksQw≠0

In a local domain

+
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Topological charge fluctuations in QCD vacuum

Lattice simulation from D Leinweber, Univ. of Adelaide

If coupled to 
chiral massless quarksQw≠0

In a local domain

Chirality imbalance

= 2Qw

+

Electroweak sphalerons➡ cosmo baryon asymmetry
6

𝑬) * 𝑩)

(chiral anomaly)



Relativistic nuclear collisions
QGP

Domains of imbalanced left- and right-handed quarks
speculated to form in the hot QGP fluid

7Morley & Schmidt (1985) and Kharzeev, Pisarski & Tytgat (1998)



Spectators (protons)

⬆
!
B

External magnetic field

Spectators (protons)y
z
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Spectators (protons)

Strongest magnetic field achieved in the lab

⬆
!
B ⬆

!
B

highly time-dependent, and short-lived

External magnetic field

Spectators (protons)

B ~ 1018 Gauss!

~ (ΛQCD)2 – observable effect in QCD

y
z

y
x
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The Chiral Magnetic Effect

Qw≠0

B+ +++ +

- --- -

(1) (2) (3)

Chirality imbalance
(𝜇5 ≠ 0)

Topological charges Electric current
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The Chiral Magnetic Effect

Qw≠0

B+ +++ +

- --- -

(1) (2) (3)

Chirality imbalance
(𝜇5 ≠ 0)
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Qe( )2
2π 2 µ5
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B
!"

à Charge separation

CME: an electric current induced by B field

Topological charges Electric current

9Kharzeev, McLerran, Warringa, NPA 803 (2008) 227



The Chiral Magnetic Effect

Qw≠0

B+ +++ +

- --- -

(1) (2) (3)

Chirality imbalance
(𝜇5 ≠ 0)

Topological charges Electric current
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à Charge separation

CME: an electric current induced by B field

Kharzeev, McLerran, Warringa, NPA 803 (2008) 227



Experimental search for the CME
in nuclear collisions

2000 –
• pAu, dAu, He3Au, CuCu,  

AuAu, UU
• √sNN ~ 0.008 – 0.2 TeV

2010 –
• pPb, PbPb
• √sNN ~ 2.76 – 8 TeV

RHIC LHC
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How to measure the CME in AA?
𝛾(±,±) ≡ cos 𝜙8± + 𝜙:

± − 2Ψ>?

reaction
plane ΨRP

B

𝜙8

𝜙:

(Voloshin, arXiv:hep-ph/0406311)
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How to measure the CME in AA?

reaction
plane ΨRP

B

+ +

- -

12
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How to measure the CME in AA?

reaction
plane ΨRP

B

+ +

- -

𝛾(@,@) = cos B
C
+ B

C
=-1 < 0

𝛾(D,D) = cos EB
C
+ EB

C
=-1 < 0

Same-sign pairs:
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How to measure the CME in AA?

reaction
plane ΨRP

B

+ +

- -

𝛾(@,@) = cos B
C
+ B

C
=-1 < 0

𝛾(D,D) = cos EB
C
+ EB

C
=-1 < 0

𝛾(@,D) = cos B
C
+ EB

C
=1 > 0

Same-sign pairs:

Opposite-sign pairs:

∆𝛾	 ≡ 2𝛾 @,D − 𝛾 @,@ − 𝛾(D,D) > 0Difference:
12

𝛾(±,±) ≡ cos 𝜙8± + 𝜙:
± − 2Ψ>?

(Voloshin, arXiv:hep-ph/0406311)



(RHIC)
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(RHIC)

Same-sign pairs
(SS, ++/--)

Opposite-sign pairs
(OS, +-/-+)
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(RHIC)

B field increases

13

Same-sign pairs
(SS, ++/--)

Opposite-sign pairs
(OS, +-/-+)



Charge separation from the CME!?

(RHIC)

B field increases

13

Same-sign pairs
(SS, ++/--)

Opposite-sign pairs
(OS, +-/-+)



CME signal comparable at 0.2 TeV vs 2.76 TeV!?

(LHC)

SS

OS
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Δ𝛾 (𝛾os - 𝛾ss)	=	 SIGNAL BKG+
There are backgrounds!

Extraordinary Discovery Requires 
Extraordinary Evidence
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There are backgrounds!

Extraordinary Discovery Requires 
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resonance decays
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Δ𝛾 (𝛾os - 𝛾ss)	=	 SIGNAL BKG+
There are backgrounds!

Local charge conservation (LCC) + elliptic flow (v2) 
can describe the charge-dependent correlations

Extraordinary Discovery Requires 
Extraordinary Evidence

resonance decays
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Δ𝛾 (𝛾os - 𝛾ss)	=	 SIGNAL BKG+
There are backgrounds!

Large uncertainties in predicting the CME signal

Extraordinary Discovery Requires 
Extraordinary Evidence

AVFD

Lifetime of B field
Chiral quark formation time
Axial charge (μ5) diffusion
…

J. Liao et al, arXiv:1711.02496
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Δ𝛾 (𝛾os - 𝛾ss)	=	 SIGNAL BKG+
There are backgrounds!

Extraordinary Discovery Requires 
Extraordinary Evidence

Can we rule out the null hypothesis:
Δ𝛾 data 100% consistent with the BKG?

in data-driven approach
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Δ𝛾 (𝛾os - 𝛾ss)	=	 SIGNAL BKG+
There are backgrounds!

Extraordinary Discovery Requires 
Extraordinary Evidence

Any way to turn on/off signal in a control way?
Ø Compare Δ𝛾 w and w/o the CME signal

Can we rule out the null hypothesis:
Δ𝛾 data 100% consistent with the BKG?

in data-driven approach
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Surprises in small systems
p p

OR

In AA-like, rare high-multiplicity events, 

Signatures of QGP discovered (e.g., elliptic flow)!
(see a review: K. Dusling, WL, B. Schenke, arXiv:1509.07939)

p Pb
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Charge separation signal: Δγ = B2 cos2 ΨB −ΨEP( )~

Surprises in small systems
RP
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PRL 118, 122301 (2017)
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B

RP

Charge separation signal: Δγ = B2 cos2 ΨB −ΨEP( )~

Surprises in small systems
RP

Δγ CME ≈ 0
cos2 ΨB −ΨEP( ) ≈ 0In pA, RP

(turn off the signal)

20

PRL 118, 122301 (2017)



B

RP

Charge separation signal: Δγ = B2 cos2 ΨB −ΨEP( )~

Surprises in small systems
RP

Δγ CME ≈ 0
cos2 ΨB −ΨEP( ) ≈ 0In pA, RP

(turn off the signal)

A litmus test of the CME!

If CME signal dominant in AA,
Δ𝛾PbPb ≫ Δ𝛾pPb

20

PRL 118, 122301 (2017)
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A major challenge to the CME mechanism!

(LHC)

pPb v.s. PbPb:
– nearly identical!

BKG dominant!?
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New opportunities from small systems

i. Understand the exact origin of BKG
ii. Any CME signal, if BKG is removed?

(pPb)
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New opportunities from small systems

i. Understand the exact origin of BKG
ii. Any CME signal, if BKG is removed?

(pPb)

∆𝜸 = 	∆𝜸𝐂𝐌𝐄+𝜿 * 𝒗𝟐 * ∆𝜹
(LCC ackground)(Signal)

𝛿(±,±) ≡ cos 𝜙8± − 𝜙:
±

(Two-particle correlations)
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∆𝜸/∆𝜹 = 𝜿 * 𝒗𝟐 +	∆𝜸𝐂𝐌𝐄/∆𝜹

ellipticity(v2)
0 0.05 0.1 0.15

0.2

∆𝜸
/∆
𝜹

Engineer the “event shape” (v2)
Turn off BKG by extrapolating to v2 = 0

Fixed B field

24
PRC 97 (2018) 044912



∆𝜸/∆𝜹 = 𝜿 * 𝒗𝟐 +	∆𝜸𝐂𝐌𝐄/∆𝜹

ellipticity(v2)
0 0.05 0.1 0.15

0.2

∆𝜸
/∆
𝜹

Engineer the “event shape” (v2)
Turn off BKG by extrapolating to v2 = 0

intercept ~ 0

Fixed B field
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Upper limits on the ∆𝛾CME at the LHC

< 7% in PbPb
(95% C.L.)

< 30% in PbPb
(95% C.L.)
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How about at lower energies?

CME@LHC

???

Unlikely to be 
observed (IMHO)
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Magnetic field last longer at RHIC energies?

arXiv:0907.1396
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AuAu 200 GeV: CME fraction < 𝟓~𝟐𝟎%	
Consistent with LHC energy

(STAR	overview	talk	by	Z.	Ye	@	Quark	Matter	2018)

Extracting the CME signal at RHIC

Engineer the
event shape}
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QGP effect

NPA 929 (2014) 184

In the vacuum

QGP fluid with
electric conductivity

Independent constraint on the magnetic field crucial!
(e.g., directed flow of charm v.s. anticharm)

Magnetic field
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What’s next for the CME? 

Expect similar BKG but 10% difference in B field

• Isobaric collisions at 200 GeV at RHIC in 2018

𝜟𝜸𝑹𝒖𝑹𝒖𝑪𝑴𝑬 > 𝜟𝜸𝑹𝒖𝑹𝒖𝑪𝑴𝑬
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What’s next for the CME? 

Expect similar BKG but 10% difference in B field

If           ~ 10%, 3-4σ difference in ∆𝜸	with 6B events

• Isobaric collisions at 200 GeV at RHIC in 2018

• Beam Energy Scan II at RHIC: 2019-2021
explore lower energy range: 7.7 - 200 GeV

𝜟𝜸𝑹𝒖𝑹𝒖𝑪𝑴𝑬 > 𝜟𝜸𝑹𝒖𝑹𝒖𝑪𝑴𝑬

∆𝜸𝐂𝐌𝐄

∆𝜸
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What’s next for the CME? 

pp, PbPb PbPb PbPbpppPb PbPb

PbPb PbPbpPb

Run 2 Run 3

Run 4
possibly also other smaller ion species

We are here LHC
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What’s next for the CME? 

pp, PbPb PbPb PbPbpppPb PbPb

PbPb PbPbpPb

Run 2 Run 3

Run 4
possibly also other smaller ion species

We are here LHC
∆𝜸

𝐂𝐌
𝐄

∆𝜸

~ 1% limit

LHC
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Topological phases in QCD
Deconfinement, chiral symmetry restoration 
Initial strongest magnetic field

Rich physics of the CME in QCD and QGP

Hints of the CME seen but backgrounds substantial
ü pPb data suggest background dominant at the LHC
ü Upper limit of the signal fraction: < a few % in PbPb

Future programs promising for definitive answer!

Three birds with one stone!

Summary

Isobars, BESII@RHIC; HL-LHC


