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Chirality

Object and its mirror image
are non-superimposable

— Chiral

 Chirality in DNA

Mirror Plane




Chirality

In particle physics,

chirality related to inherent quantum properties

Chirality = Helicity for massless particles
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Chiral symmetry in QCD

Chiral symmetry broken
in the QCD vacuum

= chiral condensates
= “massive” quarks

account for 99% of
the hadron mass




Chiral symmetry in QCD

Chiral symmetry broken
in the QCD vacuum

= chiral condensates
= “massive” quarks

account for 99% of
the hadron mass

Chiral symmetry expected to restored at high
temperature (=154 MeV from lattice),

= quarks becomes nearly “massless” or “chiral”



Gauge field and topological charges
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Topological charges (or winding number):

Q, ~ E% - B* — parity violating!



Topological charge fluctuations in QCD vacuum
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Lattice simulation from D Leinweber, Univ. of Adelaide



Topological charge fluctuations in QCD vacuum

In a local domain



Topological charge fluctuations in QCD vacuum
In a local domain

If coupled to
+ chiral massless quarks



Topological charge fluctuations in QCD vacuum
In a local domain

If coupled to
+ chiral massless quarks

l (chiral anomaly)

Chirality imbalance
W) — N (W) —
=Y (\\5) s (J) =2Q,

Electroweak sphalerons = cosmo baryon asymmetry



Relativistic nuclear collisions

Hadrons

Temperature T [MeV]
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Domains of imbalanced left- and right-handed quarks
speculated to form in the hot QGP fluid

Morley & Schmidt (1985) and Kharzeev, Pisarski & Tytgat (1998)



External magnetic field

y B Spectators (protons)
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External magnetic field
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Strongest magnetic field achieved in the lab
highly time-dependent, and short-lived

~ (Aqcp)? — observable effect in QCD

Spectators (protons)



The Chiral Magnetic Effect

Topological charges ! Chirality imbalance
5 (us # 0)

Electric current



The Chiral Magnetic Effect

Topological charges ! Chirality imbalance
5 (us # 0)

CME: an electric current induced by B field

Electric current
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The Chiral Magnetic Effect

Topological charges ! Chirality imbalance
5 (us # 0)

ic current induced by B field

Electric current
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Experimental search for the CME
In nuclear collisions

.. Lake Geneva

~ (RHIC)
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2000 — 2010 —
« pAu, dAu, He3Au, CuCu, « pPb, PbPb
AuAu, UU . \/sNN ~2.76 — 8 TeV

¢ sy~ 0.008 — 0.2 TeV



How to measure the CME in AA?
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How to measure the CME in AA?




How to measure the CME in AA?

Opposite-sign pairs:

y ™) = cos (g + 37ﬂ)=1 >0




How to measure the CME in AA?

L . + E)=-1 <0
Opposite-sign pairs: 2

y ™) = cos (g + 37ﬂ)=1 >0




|24 Selected for a Viewpoint in Physics week ending
PRL 103, 251601 (2009) PHYSICAL REVIEW LETTERS 18 DECEMBER 2009

S

Azimuthal Charged-Particle Correlations and Possible Local Strong Parity Violation
(STAR Collaboration) (RHIC)
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|2 Selected for a Viewpoint in Physics

week endin

PRL 103, 251601 (2009) PHYSICAL REVIEW LETTERS 18 DECEMBER 2009

S

Azimuthal Charged-Particle Correlations and Possible Local Strong Parity Violation

Opposite-sign pairs
(OS, +-/-+)

Same-sign pairs
(SS, ++/--)

(STAR Collaboration) (RHIC)
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|24 Selected for a Viewpoint in Physics week ending
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S

Azimuthal Charged-Particle Correlations and Possible Local Strong Parity Violation
(STAR Collaboration) (RHIC)
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|24 Selected for a Viewpoint in Physics week ending
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Azimuthal Charged-Particle Correlations and Possible Local Strong Parity Violation
(STAR Collaboration) (RHIC)
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week endin

PRL 110, 012301 (2013) PHYSICAL REVIEW LETTERS 4 JANUARY 5013

Charge separation relative to the reaction plane in Pb-Pb collisions at . /syy = 2.76 TeV
(ALICE Collaboration) (LHC)
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CME signal comparable at 0.2 TeV vs 2.76 TeV!?



Extraordinary Discovery Requires

Extraordinary Evidence
There are backgrounds!

(- h 4 )

Ay (y°s - y5s) = [SIGNAL | + BKG
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Extraordinary Discovery Requires

Extraordinary Evidence
There are backgrounds!

(- )

Ay (Yo - y*) = BKG

resonance decays

----------

reaction

plané

——————————



Extraordinary Discovery Requires

Extraordinary Evidence
There are backgrounds!

( )
Ay (y°s - y55) = BKG
. Y,
B S. Schlichting and S. Pratt, Phys. Rev. C 83, 014913 (2011)
resonance decays
0.04 +—e— charge separation in Au+Au 200 GeV
—e— background model
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Local charge conservation (LCC) + elliptic flow (v,)
can describe the charge-dependent correlations



Extraordinary Discovery Requires
Extraordinary Evidence

( )
Ay (y°s - y55) = | SIGNAL
4 /

Large uncertainties in predicting the CME signal

Lifetime of B field sl AusAu 200 GeV
Chiral quark formation time | ,} STAR {r

Axial charge (u;) diffusion
AVFD
) z
x

10 20 30 40 50 60
Centrality



Extraordinary Discovery Requires

Extraordinary Evidence
There are backgrounds!

(" ) (" )
Ay (y°s - y5s) = [SIGNAL | + BKG
U J G J

Can we rule out the null hypothesis:
Ay data 100% consistent with the BKG?
iIn data-driven approach




Extraordinary Discovery Requires

Extraordinary Evidence
There are backgrounds!

4 )

. Ciy, )
Ay (y°s-y5) = |SIGNAL| + | BKG
9 w 4

Can we rule out the null hypothesis:
Ay data 100% consistent with the BKG?
iIn data-driven approach

Any way to turn on/off signal in a control way?
» Compare Ay w and w/o the CME signal



sSurprises in small systems
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In AA-like, rare high-multiplicity events,

{0 Y CMS Experiment at the LHC, CERN
‘ Data recorded: 2016-Nov-18 15:29:12.5§28128 GMT

RunEvent / LS: 285505/ 107810622 / 166

Signatures of QGP discovered (e.g., elliptic flow)!

(see a review: K. Dusling, WL, B. Schenke, arXiv:1509.07939)



Surprises in small systems

Charge separation signal: Ay ~ <82 cos2(W, - W,, )>

CMS pPb

10‘[]]IlllIllllll[llllllllllll]llllllllll

% ‘
) ,'.z«w
P AN

S
9} “ X

Vo) =

IlllllllllllllllllllllIlllllllllllll

y (fm)
o
lllllllIlllllllllllllllllllllllllllllll

111

_10lIIIIIlIlIllllllll/‘l\llllllllllllllllIlIl
~10-8 -6 -4-20 2 4 6 8 10
X (fm)



Surprises in small systems

Charge separation signal: Ay ~ (B’ cos2(W, - ¥, ))

CMS pPb
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Surprises in small systems

Charge separation signal: Ay ~ (B’ cos2(W, - ¥, ))

CMS pPb
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Il systems

ISES IN SMa
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Surprises in small systems

Charge separation signal: Ay ~ (B’ cos2(W, - ¥, ))
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Surprises in small systems

Charge separation signal: Ay ~ (B’ cos2(W, - ¥, ))

In pA, (cos2(W,-W,,))=~0

= A)/CME ~ O

(turn off the signal) €
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sSurprises in small systems

Charge separation signal: Ay ~ (B’ cos2(W, - ¥, ))

10
In pA, (cos2(¥,-W.,))~0 s
B A)/CME =~ () 4

(turn off the signal) E
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A litmus test of the CME!
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week ending

PRL 118, 122301 (2017) PHYSICAL REVIEW LETTERS 24 MARCH 2017

S

Observation of Charge-Dependent Azimuthal Correlations in p-Pb Collisions
and Its Implication for the Search for the Chiral Magnetic Effect

(CMS Collaboration) (LHC)
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A major challenge to the CME mechanism!



New opportunities from small systems
(pPb)
i. Understand the exact origin of BKG
il. Any CME signal, if BKG is removed?



New opportunities from small systems
(pPb)
i. Understand the exact origin of BKG
il. Any CME signal, if BKG is removed?

Ay = Ay"ME 4. v, - AS
(Signal)  (LCC ackground)




New opportunities from small systems
(pPb)
i. Understand the exact origin of BKG
il. Any CME signal, if BKG is removed?

Ay = Ay"ME 4. v, - AS
(Signal)  (LCC ackground)
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Engineer the "event shape” (v,)

Turn off BKG by extrapolating to v, =0
Ay /A8 = Kk - vy + Ay*ME/AS

" PbPb 5.02 TeV
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Engineer the "event shape” (v,)

Turn off BKG by extrapolating to v, =0

A)’CME/A6

intercept ~ 0

AY/A6 = K- Uz +
" PbPb 5.02 TeV
- |An| < 1.6

o |
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Upper limits on the Ay°ME at the LHC
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How about at lower energies?
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How about at lower energies?
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Magnetic field last longer at RHIC energies?



How about at lower energies?
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Magnetic field last longer at RHIC energies?



Extracting the CME signal at RHIC

(STAR overview talk by Z. Ye @ Quark Matter 2018)

Au+Au |s,, =200 GeV (20-50%)
STAR preliminary

C —e— ] WY ep/Vpp (TPC full)
[ —e— ] Yep/Yep (TPC sub-evt)
[He—i] m_ > 1.5 GeV/c® (TPC full)

[ He— ] Low m .+ ESE (TPC sub-evt) Engineer the

[+ Ay, ESE (Ay__similar) event shape

01 0 01 02 03 04 05
Possible CME Ay /inclusive Ay

AuAu 200 GeV: CME fraction < 5~20%
Consistent with LHC energy




Magnetic field

NPA 929 (2014) 184
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Independent constraint on the magnetic field crucial!
(e.qg., directed flow of charm v.s. anticharm)

-4 QGP fluid with
- electric conductivity



What’s next for the CME?
* |sobaric collisions at 200 GeV at RHIC in 2018
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Expect similar BKG but 10% difference in B field
S AYkuku > AY Ruku




What’s next for the CME?
* |sobaric collisions at 200 GeV at RHIC in 2018

p Zr96+ i zr 44Ru%+ 44R36
Expect similar BKG but 10% difference in B field
S AV g > AY kuku

AyCME

Ay

Ii ~ 10%, 3-40 difference in Ay with 6B events



What’s next for the CME?
* |sobaric collisions at 200 GeV at RHIC in 2018

@ Zr + i zr LRU+ RU
Expect similar BKG but 10% difference in B field
== AYRuku > AY Ruku

AYCME

Ay

Ii ~ 10%, 3-40 difference in Ay with 6B events

 Beam Energy Scan Il at RHIC: 2019-2021
explore lower energy range: 7.7 - 200 GeV



What’s next for the CME?
We are here I—HC
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possibly also other smaller ion species




What’s next for the CME?

Shutdown,
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Summary

Rich physics of the CME in QCD and QGP
'« Topological phases in QCD
'« Deconfinement, chiral symmetry restoration
'« Initial strongest magnetic field

Three birds with one stone!

Hints of the CME seen but backgrounds substantial

v" pPb data suggest background dominant at the LHC
v Upper limit of the signal fraction: < a few % in PbPb

Future programs promising for definitive answer!
Isobars, BESII@RHIC; HL-LHC



