NPDGamma: The Final Chapter

Nadia Fomin University of Tennessee CIPANP2018

May 30th, 2018

Gravity Resonance Spectroscopy

• Energy eigenstates in the gravity potential of the Earth can be probed using a new resonance-spectroscopy technique using neutrons bounced off a horizontal mirror

- Novelty: oscillating field does NOT rely on electromagnetic coupling 1. Initial state $|p\rangle$ is prepared by a state selector
	- 2. π -pulse includes a transition into state $|q\rangle$
	- 3. Second state selector transmits only |p> state to the detector

T. Jenke et al, Nature, Vol7, 2011

Gravity Resonance Spectroscopy

Future physics prospects:

Gravitational/inertial mass equivalence Dark Matter searches

T. Jenke et al, Nature, Vol7, 2011

Free neutron *β*-decay

- Prototype for all weak decays of hadrons and leptons
- Input to tests of the Standard Model
- Input to Big Bang Nucleosynthesis models

 V_{ud} – determined from neutron lifetime and free neutron decay

More This Afternoon: Tests of Symmetries and the Electroweak Interaction: Parallel 4 — Beta Decays

NPDGamma: What are we measuring?

Why are we measuring it?

- Natural scale \sim x10⁻⁷, set by relative size of meson vs boson exchange amplitudes
- Weak interaction at low momentum transfer between nucleons is accessible through measurements of small parityodd amplitudes
- **Presence of strong force complicates** experiments

Hadronic Weak Interaction – Theory

1. DDH model – uses valence quarks to estimate effective PV meson-nucleon coupling directly from SM via weak meson coupling constants

 $h^1_{\pi}, h^0_{\rho}, h^1_{\rho}, h^1_{\rho}, h^2_{\rho}, h^0_{\omega}, h^1_{\omega}$

• Observables can be written as their combinations $A = a_{\pi}^1 h_{\pi}^1 + a_{\rho}^0 h_{\rho}^0 + a_{\rho}^1 h_{\rho}^1 + a_{\rho}^2 h_{\rho}^2 + a_{\rho}^0 h_{\omega}^0 + a_{\rho}^1 h_{\rho}^1$

2. *Effective Field Theory*

- comprehensive formulation by Holstein, Ramsey-Musolf, van Kolck, Zhu and Maekawa
- model-independent, consistent treatment of PC and PV interactions, theoretical error estimates
- NN potentials are expressed in terms of several parameters whose linear combinations give us 5/6 (pionless/chiral) low energy coupling constants

3. Lattice QCD

$\mathbf{n}+\mathbf{p} \rightarrow \mathbf{d}$ + γ (isolates $\Delta I=I$) Goal: $dA = 1 \times 10^{-8}$

1. DDH model

$$
A = \underbrace{(0.11h_{\pi}^{1})} 0.001h_{\rho}^{1} + 0.004h_{\omega}^{1}
$$

 $\bigg\{ \text{Reasonable range: -11} < h^1_{\pi} < 0 \text{ [x10^{-7}]} \bigg\} \bigg\} \bigg\} h^1_{\pi} \sim 4.5 \times 10^{-7}$

2. *Effective Field Theory*

$$
A_{\gamma} = \frac{4}{3} \sqrt{\frac{2}{\pi}} \frac{M^{\frac{3}{2}}}{\kappa_1 \left(1 - \gamma a^{(1S_0)}\right)} \, g^{(^3S_1 - ^3P_1)}
$$

3. **Lattice QCD**
$$
h^1_{nNN}=1.099\pm 0.505 \frac{+0.058}{-0.064} [x10^{-7}]
$$

-- J. Wasem, PRC C85 (2012)

Hadronic Weak Interaction – Theory

1. DDH model – uses valence quarks to calculate effective PV meson-nucleon coupling directly from SM via weak meson coupling constants

 $\{h^1_{\pi}\}\!\!\left.\right\rangle \!\! h^0_{\rho}, h^1_{\rho}, h^1_{\rho}, h^2_{\rho}, h^0_{\omega}, h^1_{\omega}$

• Observables can be written as their combinations

 $A = (a_{\pi}^1 h_{\pi}^1) + a_{\rho}^0 h_{\rho}^0 + a_{\rho}^1 h_{\rho}^1 + a_{\rho}^2 h_{\rho}^2 + a_{\omega}^0 h_{\omega}^0 + a_{\omega}^1 h_{\omega}^1$

	$n+p \rightarrow d+\gamma$ $A_{\nu}(ppm)$	$n+3He \rightarrow 3H+p$ $A_{\nu}(ppm)$	$n-p \varphi_{PV}$ $(\mu rad/m)$	n - ⁴ He φ_{PV} $(\mu rad/m)$	$p-p \Delta \sigma/\sigma$	p - ⁴ He $\Delta \sigma/\sigma$
h_{π}^{l}	-0.107	-0.185	-3.12	-0.97		-0.340
h_{ρ}^{0}		-0.038	-0.23	-0.32	0.079	0.140
$h_{\rho}^{\ \ l}$	-0.001	0.023		0.11	0.079	0.047
h_{ρ}^2		0.001	-0.25		0.032	
h_o^0		-0.05	-0.23	-0.22	-0.073	0.059
$h_a^{\ \ l}$	0.003	-0.023		0.22	0.073	0.059

$\mathbf{n}+\mathbf{p}$ **d** + γ (isolates $\Delta I=I$) Goal: $dA = 1 \times 10^{-8}$

NN weak Interaction is a "test case" for our ability to trace symmetry-violating effects across strong interaction cases

1. NN weak interactions can DIRECTLY test QCD via lattice gauge theory

 Calculation of the ΔI=2 NN weak amplitude on the lattice is in progress (Cal-Lat collaboration)

2. NN weak interactions can test QCD in the low energy limit using effective field theory (EFT) treatment. *New 1/N^c expansion+EFT predicts LARGE isospin dependence of NN weak amplitudes*

Implications for Current and Future PV Experiments

NN Weak Amplitudes in EFT + 1/N^c : ΔI=1 Amplitudes should be suppressed by $1/N_c^2 = 1/9$

Gardner, Haxton, Holstein Ann.Rev.Nucl.Part.Sci. 67 (2017) 69-95

NPDGamma: How do we measure the asymmetry?

Where did we do this – SNS at ORNL

- •1.4 GeV protons, 60Hz
- \cdot Hg Spallation target \rightarrow neutrons
- \cdot H₂ moderator
- •17 m SM guide, curved

FnPB – cold beamline commissioned on Sep 12th, 2008

FnPB neutrons are polarized

LH₂ target - Parahydrogen

- No safety issues from sensors in the hydrogen system
- Energy dependence of the neutron transmission can be used

Parahydrogen Target

Neutron Capture in 3D

New measurement of the scattering cross section of slow neutrons on liquid parahydrogen from neutron transmission

K. B. Grammer,^{1,*} R. Alarcon,² L. Barrón-Palos,³ D. Blyth,² J. D. Bowman,⁴ J. Calarco,⁵ C. Crawford,⁶ K. Craycraft,^{1,6} D. Evans,⁷ N. Fomin,¹ J. Fry,⁸ M. Gericke,⁹ R. C. Gillis,⁸ G. L. Greene,^{1,4} J. Hamblen,¹⁰ C. Hayes,¹ S. Kucuker,¹ R. Mahurin,^{11,9} M. Maldonado-Velázquez,³ E. Martin,⁶ M. McCrea,⁹ P. E. Mueller,⁴ M. Musgrave,¹ H. Nann,⁸ S. I. Penttilä,⁴ W. M. Snow,⁸ Z. Tang,^{12,8} and W. S. Wilburn¹²

Asymmetry Extraction

•In principle, experiment can be done with just one detector, reversing the neutron spin:

$$
A_{raw} = \frac{Y^{\uparrow} - Y^{\downarrow}}{Y^{\uparrow} + Y^{\downarrow}}
$$

•Add opposite detector at same angle*

(eliminates some systematic errors):

$$
A_{raw} = \frac{1}{2} \left(\frac{Y_i^{\uparrow} - Y_j^{\uparrow}}{Y_i^{\uparrow} + Y_j^{\uparrow}} + \frac{Y_j^{\downarrow} - Y_i^{\downarrow}}{Y_j^{\downarrow} + Y_i^{\downarrow}} \right)
$$

**Final asymmetry normalization was different*

Chlorine Asymmetry Results

Corrections:

- \rightarrow Background Subtraction
- \rightarrow Beam Polarization
- \rightarrow Beam Depolarization
- \rightarrow RFSF Efficiency

3% Uncertainty from geometric factors

Production Hydrogen Configuration

What we actually measure

Detector signals \rightarrow Asymmetries

- *Runs are made up of 8-step sequences: 4 with neutron spin || B-field, 4 with neutron spin reversed*
- *Each spin sequence – 48 detector asymmetries*

Hydrogen Data

Raw detector asymmetries with minimal cuts:

- Require beam on for several spin sequences \rightarrow "good beam history"
- 1% beam stability
- No data corruption

All the hydrogen data (2015)

Compositions of Cryo-vessel and Aluminum target Differ

Compositions of Cryo-vessel and Aluminum target Differ

NPDGAMMA (AGAIN)

- Determine pieces of cryostat that came from single pour and assume independent
- \bullet Cut up LH_2 cryostat
- Design targets to replicate background with parahydrogen vessel full
- Composite target to mimic neutron capture on original $LH₂$ vessel

Aluminum 2.0 running completed (June 2016)

- New false asymmetry makes for an "exciting" data analysis
- Analysis completed, PRL submtited

Final Analysis approach

Write down:

$$
\chi^2_{grand} = \chi^2_H \big(A_{UD}^H, A_{LR}^H, A_{UD}^{AL}, A_{LR}^{AL} \big) + \chi^2_{AL} \big(A_{UD}^{AL}, A_{LR}^{AL} \big)
$$

Where A_{UD}^H , A_{LR}^H , A_{UD}^{AL} , A_{LR}^{AL} are free parameters

From the data, we have $A_i^{raw} = P_{tot}(f_i^H A_i^H + f_i^{AL} A_i^{AL})$

Where f_i^H , f_i^{AL} fractions of the total signal due to neutron capture on H or **Al, respectively**

And the physics asymmetries are modified by the geometric factors for each pair via

$$
A_i^H = G_{UD,i}^H A_{UD}^H + G_{LR,i}^H A_{LR}^H
$$

$$
A_i^{AL} = G_{UD,i}^{AL} A_{UD}^{AL} + G_{LR,i}^{AL} A_{LR}^{AL}
$$

Solve for A_{UD}^H , A_{LR}^{H} , A_{UD}^{AL} , A_{LR}^{AL} simultaneously using both data sets

Final Answer?

Three analyses converged on one PV proton asymmetry

$$
A_{\gamma, PV}^{p} = -3.0 \pm 1.4 \pm 0.2 [\times 10^{-8}]
$$

• After 20ish years, NPDGamma has made a 1e-8 measurement of the long range component of the Hadronic Weak Interaction

ϑ

•Isolates the $\Delta I = 1$ piece of the Hadronic Weak Interaction

•Not hindered by nuclear effects

• Future measurement at ESS?

The NPDGamma collaboration*

P. Alonzi³, R. Alacron¹, R. Allen⁴, E, Askanazi³, S. Balascuta¹, L. Barron-Palos², S. Baeßler^{3,4}, A. Barzilov²⁵, D. Blyth¹, J.D. Bowman⁴, M. Bychkov³, J.R. Calarco⁹, R.D. Carlini⁵, W.C. Chen⁶, T.E. Chupp⁷, C. Crawford⁸, K. Craycraft⁸, M. Dabaghyan⁹, D. Evans³, J. Favela², N. Fomin¹⁰, S.J. Freedman¹³, E. Frlež³, J. Fry^{11,3}, T.R. Gentile⁶, M.T. Gericke¹⁴ R.C. Gillis¹¹, K. Grammer¹², G.L. Greene^{4,12}, J. Hamblen²⁶, F. W. Hersman⁹, T. Ino¹⁵, G.L. Jones¹⁶, S. Kucucker¹², B. Lauss¹⁷, W. Lee¹⁸, M. Leuschner¹¹, W. Losowski¹¹, R. Mahurin¹⁴, M. Madonado-Velazques², M. McCrea¹⁴, Y. Masuda¹⁵, J. Mei¹¹, G.S. Mitchell¹⁹, P. Mueller⁴, S. Muto¹⁵, M. Musgrave¹², H. Nann¹¹, I. Novikov²⁵, S. Page¹⁴, D.Počanic³, S.I. Penttila⁴, D. Ramsay^{14,20}, A. Salas Bacci¹⁰, S. Santra²¹, P.-N. Seo³, E. Sharapov²³, M. Sharma⁷, T. Smith²⁴, W.M. Snow¹¹ , E. Tang⁸, Z. Tang¹¹, W.S. Wilburn¹⁰, V. Yuan¹⁰

¹Arizona State University Universidad Nacional Autonoma de Mexico University of Virginia Oak Ridge National Laboratory Thomas Jefferson National Laboratory National Institute of Standards and Technology Univeristy of Michigan, Ann Arbor University of Kentucky University of New Hampshire Los Alamos National Laboratory Indiana University University of Tennessee University of California at Berkeley University of Manitoba, Canada ¹⁵High Energy Accelerator Research Organization (KEK), Japan

¹⁶Hamilton College Paul Scherrer Institute, Switzerland Spallation Neutron Source University of California at Davis TRIUMF, Canada Bhabha Atomic Research Center, India Duke University Joint Institute of Nuclear Research, Dubna, Russia University of Dayton Western Kentucky University University of Tennessee at Chattanooga *This work is supported by DOE and NSF (USA) NSERC (CANADA) CONACYT (MEXICO)*

BARC (INDIA)

Parity Violation in $n+$ 139La at 0.734 eV $\Delta\sigma/\sigma=10\%$ Standard Model P Violation Amplified by ~10⁶!

The enhancement of P-odd/T-odd amplitude on p-wave resonance $(\sigma$ *.[K X I]) is (almost) the same as for P-odd amplitude* $(\sigma.K)$ *.*

Experimental observable: ratio of P-odd/T-odd to P-odd amplitudes $\lambda_{PT} = \frac{\delta \sigma_{PT}}{\delta \sigma_P}$

 λ can be measured with a statistical uncertainty of ~1 10⁻⁶ in 10⁷ sec at MW*class spallation neutron sources. Ratio (T-odd amplitude in nucleon/strong amplitude)~10-13. Statistical sensitivity up to 100X better than present neutron EDM limit. NOPTREX collaboration engaged in R&D now.*

Forward scattering neutron optics limit is null test for T (no "final state effects")