NPDGamma: The Final Chapter

Nadia FominCIPANP2018University of Tennessee

May 30th, 2018

Gravity Resonance Spectroscopy

• Energy eigenstates in the gravity potential of the Earth can be probed using a new resonance-spectroscopy technique using neutrons bounced off a horizontal mirror

- Novelty: oscillating field does NOT rely on electromagnetic coupling
 1. Initial state |p> is prepared by a state selector
 - 2. π -pulse includes a transition into state |q>
 - 3. Second state selector transmits only |p> state to the detector

T. Jenke et al, Nature, Vol7, 2011

Gravity Resonance Spectroscopy

Future physics prospects:

Gravitational/inertial mass equivalence Dark Matter searches

T. Jenke et al, Nature, Vol7, 2011

Free neutron β-decay

- Prototype for all weak decays of hadrons and leptons
- Input to tests of the Standard Model
- Input to Big Bang Nucleosynthesis models

 V_{ud} – determined from neutron lifetime and free neutron decay

More This Afternoon: Tests of Symmetries and the Electroweak Interaction: Parallel 4 — Beta Decays

NPDGamma: What are we measuring?

Why are we measuring it?

- Natural scale ~x10⁻⁷, set by relative size of meson vs boson exchange amplitudes
- Weak interaction at low momentum transfer between nucleons is accessible through measurements of small parity-odd amplitudes
- Presence of strong force complicates experiments

Hadronic Weak Interaction – Theory

1. <u>**DDH model**</u> – uses valence quarks to estimate effective PV meson-nucleon coupling directly from SM via weak meson coupling constants

 $h^1_{\pi}, h^0_{
ho}, h^1_{
ho}, h^{1'}_{
ho}, h^2_{
ho}, h^2_{
ho}, h^0_{\omega}, h^1_{\omega}$

• Observables can be written as their combinations $A = a_{\pi}^{1} h_{\pi}^{1} + a_{\rho}^{0} h_{\rho}^{0} + a_{\rho}^{1} h_{\rho}^{1} + a_{\rho}^{2} h_{\rho}^{2} + a_{\omega}^{0} h_{\omega}^{0} + a_{\omega}^{1} h_{\omega}^{1}$

2. Effective Field Theory

- comprehensive formulation by Holstein, Ramsey-Musolf, van Kolck, Zhu and Maekawa
- model-independent, consistent treatment of PC and PV interactions, theoretical error estimates
- NN potentials are expressed in terms of several parameters whose linear combinations give us 5/6 (pionless/chiral) low energy coupling constants

3. Lattice QCD

n+p \rightarrow **d** + γ (isolates $\Delta I = 1$) Goal: $dA = 1 \times 10^{-8}$

1. DDH model

$$A = -0.11h_{\pi}^{1} + 0.001h_{\rho}^{1} + 0.004h_{\omega}^{1}$$

Reasonable range: $-11 < h_{\pi}^{1} < 0 [x10^{-7}] \implies h_{\pi}^{1} \sim 4.5 \times 10^{-7}$

2. Effective Field Theory

$$A_{\gamma} = \frac{4}{3} \sqrt{\frac{2}{\pi}} \frac{M^{\frac{3}{2}}}{\kappa_1 \left(1 - \gamma a^{(1S_0)}\right)} g^{(^{3}S_1 - ^{3}P_1)}$$

3. Lattice QCD
$$h_{\pi NN}^{1} = 1.099 \pm 0.505 + 0.058 - 0.064 [x10^{-7}]$$

-- J. Wasem, PRC C85 (2012)

Hadronic Weak Interaction – Theory

1. <u>**DDH model**</u> – uses valence quarks to calculate effective PV meson-nucleon coupling directly from SM via weak meson coupling constants

 $(h_{\pi}^{1}, h_{\rho}^{0}, h_{\rho}^{1}, h_{\rho}^{1'}, h_{\rho}^{2}, h_{\omega}^{0}, h_{\omega}^{1})$

• Observables can be written as their combinations

 $A = a_{\pi}^{1} h_{\pi}^{1} + a_{\rho}^{0} h_{\rho}^{0} + a_{\rho}^{1} h_{\rho}^{1} + a_{\rho}^{2} h_{\rho}^{2} + a_{\omega}^{0} h_{\omega}^{0} + a_{\omega}^{1} h_{\omega}^{1}$

	$n+p \rightarrow d+\gamma A_{\gamma}(ppm)$	$n+{}^{3}He \rightarrow {}^{3}H+p$ $A_{\gamma}(ppm)$	n-p φ _{PV} (µrad/m)	n- ⁴ He φ _{PV} (µrad/m)	p-p Δσ/σ	p-⁴He ⊿σ/σ
h_{π}^{-1}	-0.107	-0.185	-3.12	-0.97		-0.340
$h_{ ho}^{0}$		-0.038	-0.23	-0.32	0.079	0.140
$h_{ ho}^{-1}$	-0.001	0.023		0.11	0.079	0.047
$h_{ ho}^{2}$		0.001	-0.25		0.032	
h_{ω}^{0}		-0.05	-0.23	-0.22	-0.073	0.059
h_{ω}^{-1}	0.003	-0.023		0.22	0.073	0.059

n+p \rightarrow **d** + γ (isolates $\Delta I = 1$) Goal: $dA = 1 \times 10^{-8}$

NN weak Interaction is a "test case" for our ability to trace symmetry-violating effects across strong interaction cases

- 1. NN weak interactions can DIRECTLY test QCD via lattice gauge theory
 - → Calculation of the △I=2 NN weak amplitude on the lattice is in progress (Cal-Lat collaboration)
- 2. NN weak interactions can test QCD in the low energy limit using effective field theory (EFT) treatment.
 → New 1/N_c expansion+EFT predicts LARGE isospin dependence of NN weak amplitudes

Implications for Current and Future PV Experiments

Observable	Exp. Status	LO Expectation	LO LEC Dependence	
$A_{\rm p}(\vec{\rm n} + {}^3{\rm He} \rightarrow {}^3{\rm H+p})$	ongoing	-1.8×10^{-8}	$-\Lambda_0^+ + 0.227\Lambda_2^{1S_0 - {}^{3}P_0}$	
$A_{\gamma}(\vec{n} + d \rightarrow t + \gamma)$	8×10^{-6} (see text) [58]	$7.3 imes 10^{-7}$	$\Lambda_0^+ + 0.44 \Lambda_2^{1S_0 - {}^3P_0}$	
$P_{\gamma}(\mathbf{n} + \mathbf{p} \rightarrow \mathbf{d} + \gamma)$	$(1.8 \pm 1.8) \times 10^{-7} [57]$	1.4×10^{-7}	$\Lambda_0^+ + 1.27 \Lambda_2^{{}^1S_0 - {}^3P_0}$	
$\left. \frac{d\phi^{\mathrm{n}}}{dz} \right _{\mathrm{parahydrogen}}$	none	$9.4\times 10^{-7}~\rm rad/m$	$\Lambda_0^+ + 2.7\Lambda_2^{{}^1S_0 - {}^3P_0}$	
$\left. \frac{d\phi^{\mathrm{n}}}{dz} \right _{\mathrm{^{4}He}}$	$(1.7 \pm 9.1 \pm 1.4) \times 10^{-7}$ [56]	$6.8\times 10^{-7}~\rm rad/m$	Λ_0^+	
$A_L(\vec{\mathbf{p}}+\mathbf{d})$	$(-3.5\pm8.5)\times10^{-8}$ [43]	-4.6×10^{-8}	$-\Lambda_0^+$	

NN Weak Amplitudes in EFT + $1/N_c$: $\Delta I=1$ Amplitudes should be suppressed by $1/N_c^2=1/9$

Gardner, Haxton, Holstein → Ann.Rev.Nucl.Part.Sci. 67 (2017) 69-95

NPDGamma: How do we measure the asymmetry?

Where did we do this – SNS at ORNL

- 1.4 GeV protons, 60Hz
- Hg Spallation target → neutrons
- H₂ moderator
- 17 m SM guide, curved

FnPB – cold beamline commissioned on Sep 12th, 2008

FnPB neutrons are polarized

LH₂ target - Parahydrogen

- No safety issues from sensors in the hydrogen system
- Energy dependence of the neutron transmission can be used

Parahydrogen Target

Neutron Capture in 3D

New measurement of the scattering cross section of slow neutrons on liquid parahydrogen from neutron transmission

K. B. Grammer,^{1,*} R. Alarcon,² L. Barrón-Palos,³ D. Blyth,² J. D. Bowman,⁴ J. Calarco,⁵ C. Crawford,⁶
K. Craycraft,^{1,6} D. Evans,⁷ N. Fomin,¹ J. Fry,⁸ M. Gericke,⁹ R. C. Gillis,⁸ G. L. Greene,^{1,4} J. Hamblen,¹⁰
C. Hayes,¹ S. Kucuker,¹ R. Mahurin,^{11,9} M. Maldonado-Velázquez,³ E. Martin,⁶ M. McCrea,⁹
P. E. Mueller,⁴ M. Musgrave,¹ H. Nann,⁸ S. I. Penttilä,⁴ W. M. Snow,⁸ Z. Tang,^{12,8} and W. S. Wilburn¹²

Asymmetry Extraction

• In principle, experiment can be done with just one detector, reversing the neutron spin: $V^{\uparrow} = V^{\downarrow}$

$$A_{raw} = \frac{Y^{\uparrow} - Y^{\downarrow}}{Y^{\uparrow} + Y^{\downarrow}}$$

Add opposite detector at same angle*

(eliminates some systematic errors):

$$A_{raw} = \frac{1}{2} \left(\frac{Y_i^{\uparrow} - Y_j^{\uparrow}}{Y_i^{\uparrow} + Y_j^{\uparrow}} + \frac{Y_j^{\downarrow} - Y_i^{\downarrow}}{Y_j^{\downarrow} + Y_i^{\downarrow}} \right)$$

*Final asymmetry normalization was different

Chlorine Asymmetry Results

Corrections:

- \rightarrow Background Subtraction
- \rightarrow Beam Polarization
- \rightarrow Beam Depolarization
- → RFSF Efficiency

3% Uncertainty from geometric factors

Measurement	A ^{pv} (x10 ⁻⁶)	
LANL	-29.1 ± 6.7	
Leningrad	-27.8 ± 4.9	
ILL	-21.2 ± 1.72	
SNS (preliminary)	-25.9 ± 0.6	

Production Hydrogen Configuration

What we actually measure

Detector signals \rightarrow Asymmetries

- Runs are made up of 8-step sequences: 4 with neutron spin || B-field, 4 with neutron spin reversed
- Each spin sequence 48 detector asymmetries

Hydrogen Data

Raw detector asymmetries with minimal cuts:

- Require beam on for several spin sequences
 → "good beam history"
- 1% beam stability
- No data corruption

All the hydrogen data (2015) 1 UΤ IU ASU Preliminars 0.5 Raw Asymmetry [x10⁻⁷] 0 Preliminal -0.5 -1 5 10 15 20 0 Detector Pair

Systematic Effects which may cause false Asym	Size			
Additive Asymmetry (instrumental)	< 1x10 ⁻⁹			
Multiplicative Asymmetry (instrumental)	< 1x10 ⁻⁹			
Stern-Gerlach (steering of the beam)	< 1x10 ⁻¹⁰			
γ – ray circular polarization	< 1x10 ⁻¹²			
β – decay in flight	< 1x10 ⁻¹¹			
Capture on ⁶ Li	< 1x10 ⁻¹¹			
Radiative β –decay	< 1x10 ⁻¹²			
$m{eta}$ - delayed Al gammas (internal + external)	< 1x10 ⁻⁹			
Uncertainties in applied corrections				
Neutron beam polarization uncertainty	< 2%			
RFSF efficiency uncertainty	~ 0.5%			
Depolarization of the neutron beam	< 0.5% (target-dependent)			
Uncertainty in geometric factors	3 %			
Polarization of overlap neutrons	0.1%			
Target Position	0.03%			
Statistical uncertainty in presented results				
Combined hydrogen and aluminum data	~1.3x10 ⁻⁸			

Compositions of Cryo-vessel and Aluminum target Differ

Compositions of Cryo-vessel and Aluminum target Differ

NPDGAMMA (AGAIN)

- Determine pieces of cryostat that came from single pour and assume independent
- Cut up LH₂ cryostat
- Design targets to replicate background with parahydrogen vessel full
- Composite target to mimic neutron capture on original LH₂ vessel

Spin rotator window

Aluminum 2.0 running completed (June 2016)

- New false asymmetry makes for an "exciting" data analysis
- Analysis completed, PRL submtited

Final Analysis approach

Write down:

$$\chi^2_{grand} = \chi^2_H \left(A^H_{UD}, A^H_{LR}, A^{AL}_{UD}, A^{AL}_{LR} \right) + \chi^2_{AL} \left(A^{AL}_{UD}, A^{AL}_{LR} \right)$$

Where $A_{UD}^{H}, A_{LR}^{H}, A_{UD}^{AL}, A_{LR}^{AL}$ are free parameters

From the data, we have $A_i^{raw} = P_{tot}(f_i^H A_i^H + f_i^{AL} A_i^{AL})$

Where f_i^H , f_i^{AL} fractions of the total signal due to neutron capture on H or Al, respectively

And the physics asymmetries are modified by the geometric factors for each pair via

$$A_i^H = G_{UD,i}^H A_{UD}^H + G_{LR,i}^H A_{LR}^H$$
$$A_i^{AL} = G_{UD,i}^{AL} A_{UD}^{AL} + G_{LR,i}^{AL} A_{LR}^{AL}$$

Solve for $A_{UD}^{H}, A_{LR}^{H}, A_{UD}^{AL}, A_{LR}^{AL}$ simultaneously using both data sets

Final Answer?

Three analyses converged on one PV proton asymmetry

$$A^{p}_{\gamma,PV} = -3.0 \pm 1.4 \pm 0.2 [\times 10^{-8}]$$

• After 20ish years, NPDGamma has made a 1e-8 measurement of the long range component of the Hadronic Weak Interaction

•Isolates the $\Delta I=1$ piece of the Hadronic Weak Interaction

•Not hindered by nuclear effects

• Future measurement at ESS?

The NPDGamma collaboration*

P. Alonzi³, R. Alacron¹, R. Allen⁴, E, Askanazi³, S. Balascuta¹, L. Barron-Palos², S. Baeßler^{3,4}, A. Barzilov²⁵, D. Blyth¹, J.D. Bowman⁴, M. Bychkov³, J.R. Calarco⁹, R.D. Carlini⁵, W.C. Chen⁶, T.E. Chupp⁷, C. Crawford⁸, K. Craycraft⁸, M. Dabaghyan⁹, D. Evans³, J. Favela², N. Fomin¹⁰, S.J. Freedman¹³, E. Frlež³, J. Fry^{11,3}, T.R. Gentile⁶, M.T. Gericke¹⁴ R.C. Gillis¹¹, K. Grammer¹², G.L. Greene^{4,12}, J. Hamblen²⁶, F. W. Hersman⁹, T. Ino¹⁵, G.L. Jones¹⁶, S. Kucucker¹², B. Lauss¹⁷, W. Lee¹⁸, M. Leuschner¹¹, W. Losowski¹¹, R. Mahurin¹⁴, M. Madonado-Velazques², M. McCrea¹⁴, Y. Masuda¹⁵, J. Mei¹¹, G.S. Mitchell¹⁹, P. Mueller⁴, S. Muto¹⁵, M. Musgrave¹², H. Nann¹¹, I. Novikov²⁵, S. Page¹⁴, D.Počanic³, S.I. Penttila⁴, D. Ramsay^{14,20}, A. Salas Bacci¹⁰, S. Santra²¹, P.-N. Seo³, E. Sharapov²³, M. Sharma⁷, T. Smith²⁴, W.M. Snow¹¹, E. Tang⁸, Z. Tang¹¹, W.S. Wilburn¹⁰, V. Yuan¹⁰

¹Arizona State University ²Universidad Nacional Autonoma de Mexico ³University of Virginia ⁴Oak Ridge National Laboratory ⁵Thomas Jefferson National Laboratory ⁶National Institute of Standards and Technology ⁷University of Michigan, Ann Arbor ⁸University of Kentucky ⁹University of New Hampshire ¹⁰Los Alamos National Laboratory ¹¹Indiana University ¹²University of Tennessee ¹³University of California at Berkeley ¹⁴University of Manitoba, Canada ¹⁵High Energy Accelerator Research Organization (KEK), Japan

¹⁶Hamilton College ¹⁷Paul Scherrer Institute, Switzerland ¹⁸Spallation Neutron Source ¹⁹University of California at Davis ²⁰TRIUMF, Canada ²¹Bhabha Atomic Research Center, India ²²Duke University ²³Joint Institute of Nuclear Research, Dubna, Russia ²⁴University of Dayton ²⁵Western Kentucky University ²⁶ University of Tennessee at Chattanooga This work is supported by DOE and NSF (USA)

NSERC (CANADA) CONACYT (MEXICO) BARC (INDIA)

Parity Violation in n+ ¹³⁹La at 0.734 eV $\Delta\sigma/\sigma=10\%$ Standard Model P Violation Amplified by ~10⁶ !

 $\begin{array}{c|c} |s\rangle & |p\rangle & |p_{1/2}\rangle & |p_{3/2}\rangle \\ J_s E_s \Gamma_s \Gamma_s^n & J_p E_p \Gamma_p \Gamma_p^n & \Gamma_{p,1/2}^n & \Gamma_{p,3/2}^n & \langle W \rangle \end{array}$

The enhancement of P-odd/T-odd amplitude on p-wave resonance (σ .[K X I]) is (almost) the same as for P-odd amplitude (σ .K).

Experimental observable: ratio of P-odd/T-odd to P-odd amplitudes $\lambda_{PT} = \frac{\delta \sigma_{PT}}{\delta \sigma_P}$

 λ can be measured with a statistical uncertainty of ~1 10⁻⁶ in 10⁷ sec at MWclass spallation neutron sources. Ratio (T-odd amplitude in nucleon/strong amplitude)~10⁻¹³. Statistical sensitivity up to 100X better than present neutron EDM limit. NOPTREX collaboration engaged in R&D now.

Forward scattering neutron optics limit is null test for T (no "final state effects")