Current Status of Hydrodynamic Modeling, from p+p to Heavy Ions

Ryan Weller

Center for Theoretical Physics, MIT

May 31, 2018

 $\mathbf{1} \qquad \mathbf{1} \qquad \mathbf{$

1

Overview

quickly review

1. 2+1D hydro+cascade model (superSONIC) calculations of anisotropic flow v_2 , v_3 , v_4 in p+p, p+Pb, Pb+Pb, plus some RW, Romatschke, PLB 774 (2017) 351-356

 $\overline{2}$

KORKA BRADE ROAD

"hydro attractor"

2. The applicability of hydro in $p+p$ (and $p/d/{}^{3}$ He+A?): non-perturbative hydro attractor

Shape of the proton, collectivity in $p+p$, $p+A$

CMS Collaboration, PLB 718 (2013) 795

high-energy/DIS perspective: Mäntysaari, Schenke, PRL 117 (2016) 052301 K ロ > K 레 > K 코 > K 코 > H 코 → YO Q O

Small η/s and collectivity in $\rm p/d/^3He{+}Au$

Monte Carlo Glauber $+$ quarks

 \triangleright Welsh, Singer, Heinz (2016): 3 transverse constituent quark positions sampled from Gaussian. Low- x gluons contribute entropy around these Welsh, Singer, Heinz, PRC 94 (2016) 024919

$$
\frac{d^3S}{dYd^2\mathbf{x}_{\perp}}(\tau_0, \mathbf{x}_{\perp}) = \kappa(\tau_0) \sum_{\{\text{part } n\}}^{N_{\text{part}}} \sum_{\{\text{quark } i \in n\}}^3 \frac{n_i}{2\pi w_{\text{q}}^2} e^{-\|\mathbf{x}_{\perp} - \mathbf{x}_i\|^2 / 2w_{\text{q}}^2}
$$

$$
n_i \sim \text{Gamma}\left(\frac{4}{9}, \frac{3}{4}\right), \quad w_{\text{q}} \approx 0.46 \text{ fm}, \quad w_{\text{N}} \approx 0.52 \text{ fm}
$$

 4 ロ) 4 \overline{r}) 4 \overline{z}) 4 \overline{z}) \Rightarrow 2990 5

$p+p$, $p+Pb$, $Pb+Pb$ collisions with superSONIC

 \triangleright preflow \rightarrow 2+1D viscous hydro \rightarrow B3D hadron cascade model (superSONIC) van der Schee, Romatschke, Pratt, PRL 111 (2013) 222302

Results: v_2 , v_3 , v_4 in central LHC-energy collisions

RW, Romatschke, PLB 774 (2017) 351-356

Experimental data from:

ATLAS: PRC 96 (2017) 024908, PRC 90 (2014) 044906 CMS: PLB 765 (2017) 193-220, PLB 724 (2013) 213-240 ALICE: PRL 116 (2016) 132302

superSONIC results for non-"central" $p+p$ collisions

Experimental data: ALICE Collaboration, Nature Phys. 13 (2017) 535-539

Results: $\langle v_2 \rangle$ and geometry response in non-central $p+p$

Experimental data: CMS, PLB 765 (2017) 193-220

 \triangleright p+p response v_2/ϵ_2 to geometry follows same trend as A+A for $dN_{\rm ch}/dY \geq 5$ fm

> 4 ロ) 4 何) 4 ミ) 4 (ニ) B $2Q$ 9

Comparing non-flow subtraction schemes for v_2

ATLAS experimental data: ATLAS, PRC 96 (2017) 024908

 \triangleright Could increase ζ/s to increase system lifetime

 \blacktriangleright However, the v_2 at low $N_{\rm ch}$ would then be highly sensitive to non-hydro sector (i.e. dependent on Is[rae](#page-8-0)l[-S](#page-10-0)[te](#page-8-0)[wa](#page-9-0)[r](#page-10-0)[t](#page-0-0) τ_{π})
 $\zeta = \zeta + \zeta \mathbb{E} \times \zeta = \zeta + \zeta \mathbb{E}$ \equiv

10

Subtleties in "choice" of hydro initial data

 \blacktriangleright How does $\langle T^{\mu\nu}\rangle$ at τ_0 depend on transverse geometry of proton?

Next steps

Be more rigorous (proton is a well-studied object)

- \triangleright Nucleon form factors, (G)PDFs, spin content, etc.
- \blacktriangleright HERA constraints on $SU(3)$ glue content

Initial stage dynamics?? vesterday's session: talk by Prithwish Tribedy

Question

How far can we push hydrodynamics?

10 → 12 → 12 → 12 → 22 → 23

Puzzle: Hydrodynamics predicts its own demise

 \triangleright First-order Navier-Stokes is non-causal \leftarrow ??? need non-hydro modes to stabilize Spalinski, PRD 94 (2016) 085002

14

 \triangleright Non-hydro modes can relax slower than expansion of fluid, causing the system to jump out of local near-equilibrium

Divergence of "perturbative" hydrodynamic series

0+1D Bjorken flow
$$
\epsilon(\tau) = \frac{1}{\tau^{4/3}} \sum_{n=0}^{\infty} \frac{a_n}{\tau^{2n/3}}, a_n \sim n!
$$
 as $n \gg 1$ (1)

Heller, Janik, Witaszczyk, PRL 110 (2013) 211602

Borel Resummation: 0+1D Bjorken Expansion

 $0+1D$ Bjorken flow $\frac{1}{\tau^{4/3}}\sum_{n=0}^{\infty}$ $n=0$ a_n $\frac{a_n}{\tau^{2n/3}}, a_n \sim n!$ as $n \gg 1$ Use a Borel resummation of the series: $\left(\frac{1}{\tau^{2/3}}\right)^n \longleftrightarrow \frac{1}{n!} \int_0^\infty d\xi \, e^{-\xi} \left(\frac{\xi}{\tau^{2/3}}\right)$ $\frac{\xi}{\tau^{2/3}}$ ⁿ Heller, Spaliński, PRL 115 (2015) 072501 a_n for $n > 0$ come from viscous $+$ other transport corrections

Convergent series:

$$
\tilde{\epsilon}(\tau,\xi) = \frac{1}{\tau^{4/3}} \sum_{n=0}^{\infty} \frac{a_n}{n!} \frac{\xi^n}{\tau^{2n/3}}
$$
(2)

Oh no!

Need to invert Borel transform: Heller, Spaliński, PRL 115 (2015) 072501

$$
\epsilon_B(\tau) = \int_0^\infty d\xi e^{-\xi} \tilde{\epsilon}(\tau, \xi) \tag{3}
$$

But $\tilde{\epsilon}(\tau, \xi)$ has singularities on real axis that must be subverted via:

- 1. analytic continuation (e.g. via Padé approximation)
- 2. plus some choice of deformation of the contour $[0, \infty)$

▶ MEANING: missing UV physics that is not captured at any order in perturbative gradient expansion

The hydro attractor

1. But ambiguities from all singularities must cancel to give finite, real result Figure 115 (2015) 172501

Trans-series solution (Écalle, 1980)

Romatschke, PRL 120 (2018) 012301

Comments

- \triangleright Lower effective viscosity far from equilibrium may explain why $\eta/s \approx 1/4\pi$ works so well for describing small systems, whereas $\eta/s \approx 0.12 \sim 0.2$ for Pb+Pb data at LHC
- ► Non-perturbative corrections $e^{-S_k(\tau T)}$ look like instanton corrections e^{-S_k/g^2} in non-perturbative QFT... origin from hydro path integrals?

The End

Thanks!

È

イロト イ部ト イ君ト イ君ト

20

Extras

Backup slides

K □ ▶ K @ ▶ K 할 X K 할 X (할 X) 할 X 9 Q (안) 21

Are MC Glauber models justified?

$P(v_n)$'s are reproduced by Monte Carlo Glauber in Pb+Pb collisions with $N_{\rm coll}$ scaling of $\frac{d^3E}{d\eta d^2\mathbf{x}_\perp}$:

Romatschke, Romatschke (2017) 1712.05815

KORKA A BRADA DE VOQO