Current Status of Hydrodynamic Modeling, from $$p{+}p$$ to Heavy lons

Ryan Weller

Center for Theoretical Physics, MIT

May 31, 2018

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

Overview

quickly review

 2+1D hydro+cascade model (superSONIC) calculations of anisotropic flow v₂, v₃, v₄ in p+p, p+Pb, Pb+Pb, plus some RW, Romatschke, PLB 774 (2017) 351-356

2

"hydro attractor"

2. The applicability of hydro in p+p (and $p/d/^{3}He+A$?): non-perturbative hydro attractor

Shape of the proton, collectivity in p+p, p+A

high-energy/DIS perspective: Mäntysaari, Schenke, PRL 117 (2016) 052301

3

Small η/s and collectivity in $p/d/^{3}He+Au$

Monte Carlo Glauber + quarks

 Welsh, Singer, Heinz (2016): 3 transverse constituent quark positions sampled from Gaussian. Low-*x* gluons contribute entropy around these
Welsh, Singer, Heinz, PRC 94 (2016) 024919

$$\frac{d^3S}{dYd^2\mathbf{x}_{\perp}}(\tau_0, \mathbf{x}_{\perp}) = \kappa(\tau_0) \sum_{\{\text{part }n\}}^{N_{\text{part}}} \sum_{\{\text{quark }i\in n\}}^3 \frac{n_i}{2\pi w_q^2} e^{-\|\mathbf{x}_{\perp} - \mathbf{x}_i\|^2/2w_q^2}$$
$$n_i \sim \text{Gamma}\left(\frac{4}{9}, \frac{3}{4}\right), \quad w_q \approx 0.46 \text{ fm}, \quad w_N \approx 0.52 \text{ fm}$$

p+p, p+Pb, Pb+Pb collisions with superSONIC

▶ preflow→2+1D viscous hydro→B3D hadron cascade model (superSONIC) van der Schee, Romatschke, Pratt, PRL 111 (2013) 222302

Results: v_2 , v_3 , v_4 in central LHC-energy collisions

RW, Romatschke, PLB 774 (2017) 351-356

Experimental data from:

ATLAS: PRC 96 (2017) 024908, PRC 90 (2014) 044906 CMS: PLB 765 (2017) 193-220, PLB 724 (2013) 213-240 ALICE: PRL 116 (2016) 132302

superSONIC results for non-"central" $\,p{+}p$ collisions

Experimental data: ALICE Collaboration, Nature Phys. 13 (2017) 535-539

Results: $\langle v_2 \rangle$ and geometry response in non-central $\mathrm{p+p}$

Experimental data: CMS, PLB 765 (2017) 193-220

▶ p+p response v_2/ϵ_2 to geometry follows same trend as A+A for $dN_{\rm ch}/dY\gtrsim 5~{\rm fm}$

Comparing non-flow subtraction schemes for v_2

ATLAS experimental data: ATLAS, PRC 96 (2017) 024908

- Could increase ζ/s to increase system lifetime
- ► However, the v_2 at low $N_{\rm ch}$ would then be highly sensitive to non-hydro sector (i.e. dependent on Israel-Stewart τ_{π})

10

Subtleties in "choice" of hydro initial data

- How does $\langle T^{\mu\nu}\rangle$ at $\tau_0~{\it depend}$ on transverse geometry of proton?

11

Glasma: Schenke, Venugopalan, PRL 113 (2014) 102301

Next steps

Be more rigorous (proton is a well-studied object)

- Nucleon form factors, (G)PDFs, spin content, etc.
- HERA constraints on SU(3) glue content

vesterday's session: talk by Prithwish Tribedy

Question

How far can we push hydrodynamics?

(ロ) (母) (目) (目) (目) (13)

Puzzle: Hydrodynamics predicts its own demise

► First-order Navier-Stokes is non-causal ← ??? need non-hydro modes to stabilize Spaliński, PRD 94 (2016) 085002

 $\underbrace{\delta\langle T^{\mu\nu}\rangle \sim e^{-i(\omega t - \mathbf{k} \cdot \mathbf{x})}}_{\text{linear response}} : \text{ modes with } \lim_{\mathbf{k} \to 0} \omega(\mathbf{k}) = 0 \qquad \lim_{\mathbf{k} \to 0} \omega(\mathbf{k}) \neq 0$

Non-hydro modes can relax slower than expansion of fluid, causing the system to jump out of local near-equilibrium

Divergence of "perturbative" hydrodynamic series

0+1D Bjorken flow
$$\epsilon(au) = rac{1}{ au^{4/3}} \sum_{n=0}^{\infty} rac{a_n}{ au^{2n/3}}, \ a_n \sim n! \ {\rm as} \ n \gg 1$$
 (1)

Heller, Janik, Witaszczyk, PRL 110 (2013) 211602

Borel Resummation: 0+1D Bjorken Expansion

 a_n for n > 0 come from viscous + other transport corrections

0+1D Bjorken flow
$$\epsilon(\tau) = \frac{1}{\tau^{4/3}} \sum_{n=0}^{\infty} \frac{a_n}{\tau^{2n/3}}, \ a_n \sim n! \text{ as } n \gg 1$$

Use a Borel resummation of the series:
 $(\frac{1}{\tau^{2/3}})^n \longleftrightarrow \frac{1}{n!} \int_0^\infty d\xi \ e^{-\xi} (\frac{\xi}{\tau^{2/3}})^n$
Heller, Spaliński, PRL 115 (2015) 072501

Convergent series:

$$\tilde{\epsilon}(\tau,\xi) = \frac{1}{\tau^{4/3}} \sum_{n=0}^{\infty} \frac{a_n}{n!} \frac{\xi^n}{\tau^{2n/3}}$$
(2)

Oh no!

Need to invert Borel transform: Heller, Spaliński, PRL 115 (2015) 072501

$$\epsilon_B(\tau) = \int_0^\infty d\xi e^{-\xi} \tilde{\epsilon}(\tau,\xi) \tag{3}$$

But $\tilde{\epsilon}(\tau,\xi)$ has singularities on real axis that must be subverted via:

- 1. analytic continuation (e.g. via Padé approximation)
- 2. plus some choice of deformation of the contour $[0,\infty)$

 MEANING: missing UV physics that is not captured at any order in perturbative gradient expansion

The hydro attractor

But ambiguities from all singularities must cancel to give finite, real result Heller, Spaliński, PRL 115 (2015) 072501

Trans-series solution (Écalle, 1980)

Romatschke, PRL 120 (2018) 012301

Comments

- ► Lower effective viscosity far from equilibrium may explain why $\eta/s \approx 1/4\pi$ works so well for describing small systems, whereas $\eta/s \approx 0.12 \sim 0.2$ for Pb+Pb data at LHC
- ▶ Non-perturbative corrections $e^{-S_k(\tau T)}$ look like instanton corrections e^{-S_k/g^2} in non-perturbative QFT... origin from hydro path integrals?

The End

Thanks!

æ

20

イロト イタト イヨト イヨト

Backup slides

Are MC Glauber models justified?

Data vs Theory: vn Distributions in AA

$P(v_n)$'s are reproduced by Monte Carlo Glauber in Pb+Pb collisions with N_{coll} scaling of $\frac{d^3E}{d\eta d^2\mathbf{x}_{\perp}}$:

Romatschke, Romatschke (2017) 1712.05815