

A Precision Measurement of the Electron-Antineutrino Correlation "a" in Neutron Beta Decay α γ

F. E. Wietfeldt

Physics Department Tulane University New Orleans, LA H amilton H amilton H

 \mathbf{H} decays the Search for \mathbf{H}

aCORN Collaboration

G. Darius, C. DeAngelis, T. Hassan, F. E. Wietfeldt *Tulane University*

M. S. Dewey, M. P. Mendenhall, J. S. Nico, H. Park (visitor) *National Institute of Standards and Technology*

> G. Noid, E. Stephenson *Indiana University*

B. Collett, G. L. Jones *Hamilton College*

A. Komives *DePauw University*

graduate student

Neutron Decay Parameters

Phenomenological (J = $1/2 \rightarrow J = 1/2$) beta decay formula [Jackson, Treiman, Wyld, 1957] :

$$
dW \propto \frac{1}{\tau} F(E_e) \left[1 + \left(a \frac{\vec{p}_e \cdot \vec{p}_v}{E_e E_v} \right) + b \frac{m_e}{E_e} + A \frac{\vec{\sigma}_n \cdot \vec{p}_e}{E_e} + B \frac{\vec{\sigma}_n \cdot \vec{p}_v}{E_v} + D \frac{\vec{\sigma}_n \cdot (\vec{p}_e \times \vec{p}_v)}{E_e E_v} \right]
$$

For allowed beta decay, neglecting recoil order terms, the standard electroweak model (Weinberg, Glashow, Salam, et al.) predicts:

$$
\begin{pmatrix}\n a = \frac{1 - \lambda^2}{1 + 3\lambda^2} & b = 0 & A = -2\frac{\lambda^2 + \text{Re}(\lambda)}{1 + 3\lambda^2} & B = 2\frac{\lambda^2 - \text{Re}(\lambda)}{1 + 3\lambda^2} \\
D = 2\frac{\text{Im}(\lambda)}{1 + 3\lambda^2} \approx 0 & \tau \propto \frac{1}{g_v^2 + 3g_A^2} & \text{where} & \lambda = \frac{g_A}{g_v}\n\end{pmatrix}
$$

Why do we measure neutron decay parameters?

Within Standard Model: Get G_A , G_V

Beyond Standard Model:

Mostovoy Parameters, model-independent consistency test of SM: predicted actual $F_1 = 1 + A - B - a = 0$ $F_1 = 0.0025 \pm 0.0064$ uncertainties dominated $F_2 = aB - A - A^2 = 0$ $F_2 = 0.0034 \pm 0.0050$ by "a"

Precise comparisons of a, b, A, B, D are sensitive to:

- scalar and tensor weak currents
- right handed weak currents
- new CP violation
- CVC violation and second-class currents (Gardner and Zhang, 2000)
- SUSY (Profumo, Ramsey-Musolf, and Tulin, 2007)

Standard method for measuring the e-νcorrelation:

recoil energy spectrum

statistically most advantageous

We separate groups I and II by beta energy and proton time-of-flight: We separate groups I and II by beta energy and proton time-of-flight (TOF)

aCORN

Electron backscatter

Electron backscatter will cause electrons to appear at a lower, incorrect energy, filling in the gap between the branches.

aCORN backscatter suppressed beta spectrometer

aCORN Beta Spectrometer

Beta Spectrometer Energy Response

Electrostatic mirror

Electrostatic mirror wirds in potentie

pyrex tube for shielding.

 \bullet **Comment of**

100 μm gold-plated BeCu wire grid, 2-mm spacing d-plated Ref

• The bottom grid is held at 3 proton collimator

ground grid

 $\mathcal{G}(\mathcal{G})$ (see Fig.).

+3 kV grid

beta collimator

Proton detector

aCORN proton detector

Proton Focusing Simulation

Typical Wishbone

Wishbone Slices

Background Subtracted Wishbone

Energy Calibration Fit

Uncorrected wishbone asymmetry

wishbone asymmetry wishbone asymmetry

Energy-dependent corrections

Energy-dependent corrections

Electrostatic mirror

Energy-dependent corrections

Electrostatic mirror

aCORN Monte Carlo calculation of the proton threshold effect

aCORN Monte Carlo calculation of the proton threshold effect

a -3.0% net correction to "a"

Beam Polarization

With a polarized neutron beam:

wishbone asymmetry
$$
A_{wb} = af_a(E_\beta) + PBf_B(E_\beta)
$$

\n
$$
\frac{Bf_B(E_\beta)}{af_a(E_\beta)} \approx 14
$$

Ratio of $X(E) / f_a(E)$

Ratio of $X(E) / f_a(E)$

a-coefficient

a-coefficient *a*-coefficient

a-coefficient

a-coefficient

aCORN NG-6 Result

aCORN NG-6 Result

 $a = -0.1090 \pm 0.0030$ (stat) ± 0.0028 (sys)

G. Darius, *et al.* Phys. Rev. Lett. **119**, 042502 (2017)

aCORN on new NG-C beamline

- aCORN moved to new NG-C end position at NIST in 2015
- Ran on NG-C from July 2015 September 2016
- \cdot ~ 5x wishbone event rate, signal/bkgd similar to NG-6
- Collected a good data set ~10 times NG-6
- Improved systematics
- Analysis in progress
- We expect a new result with relative uncertainty < 2%

ACORN B

Neutron Decay Parameters

Phenomenological ($J = 1/2 \rightarrow J = 1/2$) beta decay formula [Jackson, Treiman, Wyld, 1957]:

$$
dW \propto \frac{1}{\tau} F(E_e) \left[1 + a \frac{\vec{p}_e \cdot \vec{p}_v}{E_e E_v} + b \frac{m_e}{E_e} + A \frac{\vec{\sigma}_n \cdot \vec{p}_e}{E_e} + \left(B \frac{\vec{\sigma}_n \cdot \vec{p}_v}{E_v} \right) + D \frac{\vec{\sigma}_n \cdot (\vec{p}_e \times \vec{p}_v)}{E_e E_v} \right]
$$

For allowed beta decay, neglecting recoil order terms, the standard electroweak model (Weinberg, Glashow, Salam, et al.) predicts:

$$
a = \frac{1 - \lambda^2}{1 + 3\lambda^2}
$$

$$
b = 0
$$

$$
A = -2\frac{\lambda^2 + \text{Re}(\lambda)}{1 + 3\lambda^2}
$$

$$
B = 2\frac{\lambda^2 - \text{Re}(\lambda)}{1 + 3\lambda^2}
$$

$$
D = 2 \frac{\text{Im}(\lambda)}{1 + 3\lambda^2} \approx 0 \qquad \tau \propto \frac{1}{g_v^2 + 3g_A^2} \qquad \text{where} \qquad \lambda \equiv \frac{g_A}{g_v}
$$

Neutron Decay Parameters

Phenomenological (J = $1/2 \rightarrow J = 1/2$) beta decay formula [Jackson, Treiman, Wyld, 1957]:

$$
dW \propto \frac{1}{\tau} F(E_e) \left[1 + a \frac{\vec{p}_e \cdot \vec{p}_v}{E_e E_v} + b \frac{m_e}{E_e} + A \frac{\vec{\sigma}_n \cdot \vec{p}_e}{E_e} + \left(B \frac{\vec{\sigma}_n \cdot \vec{p}_v}{E_v} \right) + D \frac{\vec{\sigma}_n \cdot (\vec{p}_e \times \vec{p}_v)}{E_e E_v} \right]
$$

For allowed beta decay, neglecting recoil order terms, the standard electroweak model (Weinberg, Glashow, Salam, et al.) predicts:

$$
a = \frac{1 - \lambda^2}{1 + 3\lambda^2} \qquad b = 0 \qquad A = -2\frac{\lambda^2 + \text{Re}(\lambda)}{1 + 3\lambda^2} \qquad B = 2\frac{\lambda^2 - \text{Re}(\lambda)}{1 + 3\lambda^2}
$$

$$
D = 2 \frac{\text{Im}(\lambda)}{1 + 3\lambda^2} \approx 0 \qquad \tau \propto \frac{1}{g_v^2 + 3g_A^2} \qquad \text{where} \qquad \lambda \equiv \frac{g_A}{g_V}
$$

of these correlation coefficients, B has the least sensitivity to λ but the most sensitivity to possible right-handed currents

measure both flip states:

$$
\frac{A_{wb}^+ - A_{wb}^-}{2} = P B f_B(E_\beta)
$$

Statistics estimate:

- assume factor 10 lower neutron flux (XSM polarizer, collimation)
- 150 beam days (~1 year) \rightarrow 1% little "a"
- 14x larger asymmetry signal
- assume S/B same as aCORN

$$
\frac{\sigma_B}{B} \approx \frac{\sqrt{10}}{14} (1\%) = 0.0023 \text{ (stat)}
$$

aCORN

We gratefully acknowledge support from

- National Science Foundation
- National Institute of Standards and Technology
- U.S. Dept. of Energy Office of Science