STELLAR EXPLOSIONS IN THE LAB: MEASUREMENTS OF KEY NUCLEAR REACTIONS DRIVING NUCLEOSYNTHESIS

Greg Christian Texas A&M University

CIPANP Conference Palm Springs, CA May 30, 2018

Motivation

- Understand nucleosynthesis in stellar explosions
 - Novae
 - Supernovae
 - X-ray bursts
- Nuclear physics: laboratory measurements to constrain key reaction rates
 - Proton and alpha induced reactions primarily

Reaction Rates

- Rates often dominated by one or a few discrete resonances
- Resonance contribution can be determined by lab measurements:
 - Resonance energy, E_r
 - Resonance strength, $\omega\gamma$

$$N_A \langle \sigma v \rangle = 1.54 \times 10^{11} (\mu T_9)^{-3/1} \omega \gamma e^{(-11.605E_r)T_9}$$

Direct Measurements

- Measure yield of the reaction of interest, on-resonance
- Nowadays, inverse kinematics + recoil separators widely employed
 - Background suppression
 - Measurements w/ radioactive beams
- Sensitive to both strength (yield) and energy (position in extended target)

DRAGON Recoil Separator at TRIUMF Vancouver, BC Canada

Di	Reaction	Motivation	Intensity (s ⁻¹)	Purity (desired:contaminant)
	$^{21}Na(p,\gamma)^{22}Mg$	1.275 MeV line emission in ONe novae	$5 imes 10^9$	100%
	$^{12}C(\alpha, \gamma)^{16}O$	Helium burning in red giants	$3 imes 10^{11}$	
	$^{26\mathrm{g}}Al(p,\gamma)^{27}Si$	Nova contribution to galactic ²⁶ Al	$3 imes 10^9$	30,000:1
	${}^{12}C({}^{12}C,\gamma){}^{24}Mg$	Nuclear cluster models	3×10^{11}	
0	40 Ca $(\alpha, \gamma)^{44}$ Ti	Production of ⁴⁴ Ti in SNII	$3 imes 10^{11}$	10,000:1 - 200:1
- N	$^{12}C(^{16}O,\gamma)^{28}Si$	Nuclear cluster models	$3 imes 10^{11}$	
	$^{23}Mg(p,\gamma)^{24}AI$	1.275 MeV line emission in ONe novae	$5 imes 10^7$	1:20 - 1:1,000
5	$^{17}O(lpha,\gamma)^{21}Ne$	Neutron poison in massive stars	$1 imes 10^{12}$	
	$^{18}F(p,\gamma)^{19}Ne$	511 keV line emission in ONe novae	$2 imes 10^6$	100:1
	${}^{33}S(p,\gamma){}^{34}Cl$	S isotopic ratios in nova grains	$1 imes 10^{10}$	
	$^{16}O(lpha,\gamma)^{20}Ne$	Stellar helium burning	$1 imes 10^{12}$	
	$^{17}O(p,\gamma)^{18}F$	Explosive H burning in novae	$1 imes 10^{12}$	
	3 He $(\alpha, \gamma)^{7}$ Be	Solar neutrino spectrum	$5 imes 10^{11}$	
S	58 Ni (p, γ) ⁵⁹ Cu	High mass tests (p-process, XRB)	$6 imes 10^9$	
e	$^{26\mathrm{m}}Al(p,\gamma)^{27}Si$	SNII contribution to galactic ²⁶ Al	$2 imes 10^5$	1:10,000
	38 K $(p,\gamma)^{39}$ Ca	Ca/K/Ar production in novae	$2 imes 10^7$	1:1

Table credit C. Ruiz

agnetic pole

Recent Highlights (from DRAGON)

³⁸K(*p*, γ)³⁹Ca

- Significant influence on synthesis of Ar, K, & Ca in hottest novae
- Measured three L = 0 resonances in Gamow window

_ocal TOF [ns]

Recent Highlights (from DRAGON)

 Significant decrease on uncertainty of nucleosynthesis predictions

Element	Uncertainty change
Argon	25 → 2
Potassium	136 → 18
Calcium	58 → 9

First ever direct measurement of radiative capture w/ radioactive beam A > 30

G. Lotay *et al.*, Phys. Rev. Lett., 116, 132701 (2016)
G. Christian *et al.*, Phys Rev. C 97, 025802 (2018)

Recent Highlights (from DRAGON)

$$^{19}Ne(p, \gamma)^{20}Na$$

- Novae
 - Synthesis of ¹⁹F
- Type-I X-ray bursts
 - Breakout of hot CNO cycle
- Rate dominated by single resonance at E_r ~ 450 keV
 - Under investigation over 20 years, but no "definitive" direct measurement to-date

 $^{19}Ne(p, \gamma)^{20}Na$

- First establishment of reaction rate based on a *direct* measurement
- Established rate higher than previous evaluation¹
 - Depletion of ¹⁹F \rightarrow explanation for scarcity of ¹⁹F observations in novae?

U. Surrey PhD student Ryan Wilkinson

¹C. Iliadis, A. Champagne, J. Jose, S. Starrfield, & P. Tupper, Astrophys. J. Suppl. Ser. 142, 105 (2002).

R. Wilkinson et al., Phys. Rev. Lett. 119, 242701 (2017)

Indirect Measurements

- Direct measurements often not possible
 - Low cross sections
 - Low beam intensities
- Spectroscopy of key resonant states (or their mirrors) through nucleon transfer reactions

 \rightarrow Indirect determination of $\omega\gamma$

TIARA for Texas Setup Texas A&M University

- Inverse-kinematics measurements of (d, p),
 (⁶Li, d) [+ others]
- Triple-coincidence detection of light ejectile, heavy recoil, gamma rays
- Measure $d\sigma/d\Omega$
 - \rightarrow spins, spectroscopic factors
- Heavy recoil PID
 - ightarrow decay branches

radioactive beams from TAMU Cyclotron Institute upgrade

TIARA for Texas – Commissioning + Stable Beam Campaign

Constraining the $^{22}Ne(\alpha, n)^{26}Mg$ Reaction

- Neutron source for the weak s-process
- Rate likely dominated by two resonances
 - $E_x = 11.17 \text{ MeV}$
 - $E_x = 11.32 \text{ MeV}$
- ²²Ne(⁶Li, d)²⁶Mg @7 MeV/nucleon
 - Spins
 - Alpha spectroscopic factors
 - Neutron/Gamma decay branches

Black curve: sum

Spin of 11.32 MeV Resonance

- Conflicting assignments from previous experiments, but likely 0⁺, 1⁻, 2⁺
- Our angular distributions consistent w/ $J^{\pi} = 0^+$ or 1^-
- Our Γ_{γ}/Γ_n suggests L=2 or L=3 neutron resonance
 - → $J^{\pi} = 0^+, 4^+, \text{ or } 5^-$
- Combination \rightarrow likely $J^{\pi} = 0^+$

TAMU Postdoc Shuya Ota

Summary

- Nuclear reaction data required for accurate models of explosive stellar nucleosynthesis
- Both direct and indirect measurement techniques widely employed at labs around the world
- Area of active and vigorous interest, in particular as nextgeneration nuclear physics accelerators come online

Collaborators & Acknowledgements

- TRIUMF
 - C. Ruiz, D. Hutcheon, B. Davids, J. Fallis, A. Lennarz, D. Connolly
- U. Surrey
 - W. Catford, G. Lotay, S. Hallam, R. Wilkinson, A. Matta, M. Moukaddam
- TAMU
 - S. Ota, A. Saastamoinen, E. Bennett, S. Dede, G. Rogachev, R. Olsen
- ... And many more!

