Diagnosing New Physics with LUV and LFV B Decays

Alakabha Datta

University of Mississippi

May 29, 2018

CIPANP

Alakabha Datta (UMiss) [Diagnosing New Physics with LUV and LFV](#page-35-0) B Decays May 29, 2018 1/36

- \bullet In recent times there have been some anomalies in B decays that indicate lepton non-universal new physics.
- **•** These are in semileptonic $b \to c\tau\bar{\nu_{\tau}}$ transitions: $R_{D(*)}$ puzzle.
- These are in semileptonic $b \to s\ell^+\ell^-(l = \mu, e)$ transitions: R_K , $R_{K(*)}$ puzzles. BR of $b \to s\mu^+\mu^-$ modes are lower and also deviation in P_5' angular observable.
- **These all indicate LUV New Physics.**

 QQQ

- If NP is present how to probe this NP in distributions and related decays.
- LUV can often lead to lepton flavor violation.
- Will consider simultaneous explanation of $R_{D(*)}$ and R_K puzzles (1412.7164, 1609.09078) and LFV tests .

 QQ

 $R_{D^{(*)}}$ puzzle

$$
A_{SM} = \frac{G_F}{\sqrt{2}} V_{cb} \left[\langle D^{(*)}(p') | \bar{c} \gamma^{\mu} (1 - \gamma_5) b | \bar{B}(p) \rangle \right] \bar{\tau} \gamma_{\mu} (1 - \gamma_5) \nu_{\tau}
$$

$$
R(D) = \frac{\mathcal{B}(\bar{B} \rightarrow D^+ \tau^- \bar{\nu}_{\tau})}{\mathcal{B}(\bar{B} \rightarrow D^+ \ell^- \bar{\nu}_{\ell})} \qquad R(D^*) \equiv \frac{\mathcal{B}(\bar{B} \rightarrow D^{*+} \tau^- \bar{\nu}_{\tau})}{\mathcal{B}(\bar{B} \rightarrow D^{*+} \ell^- \bar{\nu}_{\ell})}.
$$

Alakabha Datta (UMiss) [Diagnosing New Physics with LUV and LFV](#page-0-0) B Decays May 29, 2018 4 / 36

 R_D , R_{D*} , HFAG

Experiments: $R_{D(*)}$ puzzle

The average of $R(D)$ and $R(D^{\ast})$ measurements evaluated by the Heavy-Flavor Averaging Group are

$$
R(D)_{exp} = 0.407 \pm 0.039 \pm 0.024,
$$

\n
$$
R(D^*)_{exp} = 0.304 \pm 0.013 \pm 0.007.
$$
\n(1)

The combined analysis of $R(D)$ and $R(D^*)$, taking into account measurement correlations, finds that the deviation is at the level of 4.1σ from the SM prediction.

> $R(D)_{SM} = 0.298 \pm 0.003$, $R(D^*)_{SM} = 0.255 \pm 0.004.$ (3)

There are lattice QCD predictions for the ratio $R(D)_{SM}$ in the Standard Model that are in good agreement with one another,

> $R(D)_{SM} = 0.299 \pm 0.011$ [FNAL/MILC], $R(D)_{SM} = 0.300 \pm 0.008$ [H[P](#page-4-0)[QC](#page-6-0)D].

Alakabha Datta (UMiss)

∗

Alakabha [D](#page-0-0)atta (UMiss) Diagnosing New Physics with LUV [an](#page-35-0)[d](#page-0-0) LFV B Decays May 29, 2018 6 / 36

 OQ

Model independent NP analysis (See for example: Datta, Duraisamy, Ghosh)

At the m_b scale: $SU(3)_c \times U(1)_{em}$.

 \bullet Effective Hamiltonian for $b \to c l^-\bar{\nu}_l$ with Non-SM couplings. The NP has to be LUV.

$$
\mathcal{H}_{\text{eff}} = \frac{4 G_F V_{cb}}{\sqrt{2}} \Big[(1 + V_L) \left[\bar{c} \gamma_\mu P_L b \right] \left[\bar{l} \gamma^\mu P_L \nu_l \right] + V_R \left[\bar{c} \gamma^\mu P_R b \right] \left[\bar{l} \gamma_\mu P_L \nu_l \right] + S_L \left[\bar{c} P_L b \right] \left[\bar{l} P_L \nu_l \right] + S_R \left[\bar{c} P_R b \right] \left[\bar{l} P_L \nu_l \right] + T_L \left[\bar{c} \sigma^{\mu \nu} P_L b \right] \left[\bar{l} \sigma_{\mu \nu} P_L \nu_l \right] \Big]
$$

The NP can be probed via distributions and other related decays.

Alakabha Datta (UMiss) [Diagnosing New Physics with LUV and LFV](#page-0-0) B Decays May 29, 2018 7 / 36

$B \to D^{(*)} \tau \nu_{\tau}$ in SM

The helicity amplitudes and consequently the NP couplings can be extracted from an angular distribution and compared with models.

Distributions have been measured very well by Belle for $B \to D^{(*)} \ell \nu_\ell$. We can then extract the Form Factors assuming no NP in these modes. If we observe τ decay then we can measure τ polarization and CPV.

 Ω

$B \to D^{(*)} \tau \nu_\tau$ in SM $+$ NP, Helicity Amplitudes

Decay Distribution described by Helicity Amplitudes

$$
\mathcal{H}_{0} = \frac{4 G_{F} V_{cb}}{\sqrt{2}} \frac{1}{2 m_{D^{*}} \sqrt{q^{2}}} \Big[(m_{B}^{2} - m_{D^{*}}^{2} - q^{2}) (m_{B} + m_{D^{*}}) A_{1}(q^{2})
$$
\n
$$
- \frac{4 m_{B}^{2} |p_{D^{*}}|^{2}}{m_{B} + m_{D^{*}}} A_{2}(q^{2}) \Big] (1 + V_{L} - V_{R}),
$$
\n
$$
\mathcal{H}_{\parallel} = \frac{4 G_{F} V_{cb}}{\sqrt{2}} \sqrt{2} (m_{B} + m_{D^{*}}) A_{1}(q^{2}) (1 + V_{L} - V_{R}),
$$
\n
$$
\mathcal{H}_{\perp} = - \frac{4 G_{F} V_{cb}}{\sqrt{2}} \sqrt{2} \frac{2 m_{B} V(q^{2})}{(m_{B} + m_{D^{*}})} |p_{D^{*}}| (1 + V_{L} + V_{R}),
$$
\n
$$
\mathcal{H}_{t} = \frac{4 G_{F} V_{cb}}{\sqrt{2}} \frac{2 m_{B} |p_{D^{*}}| A_{0}(q^{2})}{\sqrt{q^{2}}} (1 + V_{L} - V_{R}),
$$
\n
$$
\mathcal{H}_{P} = - \frac{4 G_{F} V_{cb}}{\sqrt{2}} \frac{2 m_{B} |p_{D^{*}}| A_{0}(q^{2})}{(m_{b}(\mu) + m_{c}(\mu))} (S_{R} - S_{L}).
$$

Distributions

- F_L (D^*) polarization. Distribution in θ^* .
- A_{FB} for both D and D^* . Distribution in θ_I .
- If we make the τ decay then we can measure the longitudinal tau polarization $P_{\tau}(D^{(*)})$.
- Finally we can look at CP violating terms in the angular distribution.

 Ω

医阿里氏阿里

CPV Triple products

- There are triple products that appear in the angular distributions proportional to sin χ (Datta and Duraisamy.)
- The triple product in the B rest frame: $\sim (\vec{n}_D \times \vec{n}_L) \cdot \vec{p}_{D^*} \sim \sin \chi$ with $\vec{n}_D \sim \vec{p}_D \times \vec{p}_{\pi}$ and $\vec{n}_I \sim \vec{p}_I \times \vec{p}_{\nu}$.
- These T.P. are proportional to $\mathcal{I}(H_i H^*_{\perp})$. There are CPV. In the SM these terms are absent because all SM amplitudes have the same weak phase - V_{ch} .
- Since the p_{τ} momentum is not known we make the τ decay: $\tau \to V \nu_{\tau}$ and use the V momentum to construct the T.P. (Hagiwara, Nojiri, Sakaki).

 Ω

イロト イ押ト イヨト イヨト

Other Decays

NP can be constrained from other decays have the same quark transition as $R_{D(*)}$

- $B_c → τ⁻ν_τ$ (Alonso, Grinstein, Camalich). $Γ[B_c] > Γ[B_c → τ⁻ν_τ]$. g_P coupling is very constrained.
- \bullet $B_c \rightarrow J/\psi \tau^- \bar{\nu}_{\tau}$ LHCb measurement finds about a 2 σ deviation from the SM.
- $b \rightarrow \tau \nu X$ (LEP) (Saeed Kamali, AD).
- Measurements in $\Lambda_b \to \Lambda_c \tau \bar{\nu}_\tau$ can further constrain the NP parameter space. (Datta:2017aue, Shivashankara:2015cta).
- $\bullet \Lambda_b \to \Lambda_c$ form factors are calculated from lattice QCD (Datta:2017aue, Detmold:2015aaa)

KET KEN KEN (EN 1900)

Interesting Facts

 \bullet

$$
R(D)^{Ratio} = \frac{R(D)_{exp}}{R(D)_{SM}} = 1.36 \pm 0.15(1.30 \pm 0.17),
$$

$$
R(D^*)^{Ratio} = \frac{R(D^*)_{exp}}{R(D^*)_{SM}} = 1.19 \pm 0.06(1.25 \pm 0.08).
$$
 (7)

• If NP is just $V - A$ then

$$
R_D^{\text{ratio}} \equiv \frac{R_D^{\text{expt}}}{R_D^{SM}} = |1 + V_L|^2 = R_{D^*}^{\text{ratio}} \equiv \frac{R_{D^*}^{\text{expt}}}{R_{D^*}^{SM}} \ .
$$

• If NP couples to RH particles only

$$
R_D^{\text{ratio}} \equiv \frac{R_D^{\text{expt}}}{R_D^{SM}} = (1+|V_L|^2) = R_{D^*}^{\text{ratio}} \equiv \frac{R_{D^*}^{\text{expt}}}{R_{D^*}^{SM}} \ .
$$

W' models from $SU(2)_L \times SU(2)_V \times U(1)_X \rightarrow SU(2)_L \times U(1)_Y$ (1804.04135,1804.04642 QQQ

 $b \to s \mu^+ \mu^-$ Anomaly

$$
H_{\text{eff}}(b \to s\ell\bar{\ell}) = -\frac{\alpha G_F}{\sqrt{2}\pi} V_{tb} V_{ts}^* \left[C_9 \left(\bar{s}_L \gamma^\mu b_L \right) \left(\bar{\ell} \gamma_\mu \ell \right) \right. \\ \left. + C_{10} \left(\bar{s}_L \gamma^\mu b_L \right) \left(\bar{\ell} \gamma_\mu \gamma^5 \ell \right) \right] \,,
$$
\n
$$
H_{\text{eff}}(b \to s\nu\bar{\nu}) = -\frac{\alpha G_F}{\sqrt{2}\pi} V_{tb} V_{ts}^* C_L \left(\bar{s}_L \gamma^\mu b_L \right) \left(\bar{\nu} \gamma_\mu (1 - \gamma^5) \nu \right) \,,
$$
\n
$$
H_{\text{eff}}(b \to s\gamma^*) = C_7 \frac{e}{16\pi^2} \left[\bar{s} \sigma_{\mu\nu} (m_s P_L + m_b P_R) b \right] F^{\mu\nu}
$$

 R_K puzzle, Ratios of $b \to s\mu^+\mu^-$ and $b \to se^+e^-$. Part II(Clean), 1708.02515

 $R_K \equiv \mathcal{B}(B^+ \to K^+ \mu^+ \mu^-)/\mathcal{B}(B^+ \to K^+ e^+ e^-)$

Figure: Comparison of the measurements of R_K from LHCb (black dots), BaBar (red squares) and Belle (blue triangles) with the SM expecta[tio](#page-14-0)n [\(](#page-16-0)[p](#page-14-0)[ur](#page-15-0)[pl](#page-16-0)[e li](#page-0-0)[ne](#page-35-0)): 299 Alakabha Datta (UMiss) [Diagnosing New Physics with LUV and LFV](#page-0-0) B Decays May 29, 2018 16 / 36

Figure: Comparison of the measurements of R_{K^*} from LHCb with (left) SM predictions and (right) BaBar and Belle.

 $R_{K^*}^{\text{expt}} = \begin{cases} 0.660_{-0.070}^{+0.110} \text{ (stat)} \pm 0.024 \text{ (syst)} & 0.045 \leq q^2 \leq 1.1 \text{ GeV}^2 \\ 0.685_{+0.113}^{+0.113} \text{ (stat)} + 0.047 \text{ (syst)} & 1.1 \leq q^2 \leq 6.0 \text{ GeV}^2 \end{cases}$ $0.685^{+0.113}_{-0.069}~{\rm (stat)} \pm 0.047~{\rm (syst)} ~~~~ 1.1 \leq q^2 \leq 6.0~{\rm GeV}^2~.$ R_K and R_{K^*} in the SM very close to 1 in the central bin and $R_{K^*} \sim 0.92$ in the low bin.
^{Alakabha Datta (UMiss)} 200 [Diagnosing New Physics with LUV and LFV](#page-0-0) B Decays May 29, 2018 17 / 36

Measurements from Belle finds difference in same q^2 bin as LHCb

$$
Q_5 = P_5'(\mu\mu) - P_5'(ee)
$$

(1612.05014). Large errors.

Low q^2 dominated by photon pole which is not LUV. Hence measurement difficult to understand with heavy NP.

Deviations in $b \to s \mu^+ \mu^-$ Part I- Hadronic Uncertainty

- Anomalies appear in $B \to K^{(*)} \mu^+ \mu^-$ (LHCb, Belle, Atlas, CMS) : Deviations branching ratios and in the angular observable like P'_5 .
- BR are lower than the SM predictions.
- (LHCb) $B_s^0 \rightarrow \phi \mu^+ \mu^-$ which are lower than SM predictions based on lattice QCD and QCD sum rules.
- Note all these are in $b \to s \mu^+ \mu^-$ and the SM predictions are not free of hadronic uncertainties.

 QQQ

 P'_5 in $B \to K^*(K\pi)\mu^+\mu^-$

重

 299

K ロ ▶ K 御 ▶ K 君 ▶ K 君 ▶

$$
P_5' \text{ in } B_d^0 \to K^* \mu^+ \mu^-
$$

$$
\frac{1}{d(\Gamma + \bar{\Gamma})/dq^2} \frac{d^4(\Gamma + \bar{\Gamma})}{dq^2 d\Omega}
$$
\n
$$
= \frac{9}{32\pi} \Big[\frac{3}{4} (1 - F_L) \sin^2 \theta_k + F_L \cos^2 \theta_k + \frac{1}{4} (1 - F_L) \sin^2 \theta_k \cos 2\theta_l - F_L \cos^2 \theta_k \cos 2\theta_l + S_3 \sin^2 \theta_k \sin^2 \theta_l \cos 2\phi + S_4 \sin 2\theta_k \sin 2\theta_l \cos \phi + S_5 \sin 2\theta_k \sin \theta_l \cos \phi + \frac{4}{3} A_{FB} \sin^2 \theta_k \cos \theta_l + S_7 \sin 2\theta_k \sin \theta_l \sin \phi + S_8 \sin 2\theta_k \sin 2\theta_l \sin \phi + S_9 \sin^2 \theta_k \sin^2 \theta_l \sin 2\phi \Big].
$$
\n(8)

K ロ ▶ K @ ▶ K 할 > K 할 > (할) 19 Q Q *

Optimal observables. When E_K is large, small q^2 , in leading order in SCET these observables are free from form factors. Corrections are $\sim O(\frac{1}{E_h}$ $\frac{1}{E_K}$) and α_s .

$$
P_1 = \frac{2 S_3}{(1 - F_{\rm L})} = A_{\rm T}^{(2)},
$$

\n
$$
P_2 = \frac{2}{3} \frac{A_{\rm FB}}{(1 - F_{\rm L})},
$$

\n
$$
P_3 = \frac{-S_9}{(1 - F_{\rm L})},
$$

\n
$$
P'_{4,5,8} = \frac{S_{4,5,8}}{\sqrt{F_{\rm L}(1 - F_{\rm L})}},
$$

\n
$$
P'_6 = \frac{S_7}{\sqrt{F_{\rm L}(1 - F_{\rm L})}}.
$$

\n(9)

Just like $B \to D^{(*)} \tau \nu_\tau$ one can look at other observables like F_L, A_{FB} and CP violating co-efficients. QQQ

Alakabha Datta (UMiss) [Diagnosing New Physics with LUV and LFV](#page-0-0) B Day 29, 2018 22 / 36

LHC

Alakabha Datta (UMiss) [Diagnosing New Physics with LUV and LFV](#page-0-0) B Decays May 29, 2018 23 / 36

活

Fits by many authors(1704.05435, 1704.05438, 1704.05444, 1705.05446, 1704.05447....) to all $b \rightarrow s \ell \ell$ observables: arXiv:1704.07397 : Alok et.al.

Here NP effects only the muons.

Remember in the $R_{D(*)}$ puzzle also indicated LH NP interactions. This gives a hint to connect the two anomalies.

 QQ

LFV from LUV

• Glashow, Guadagnoli and Lane (GGL), 1411.0565 pointed out in general

 $LUV \Rightarrow LEV$.

$$
\frac{G}{\Lambda_{NP}^2}(\bar b'_L\gamma_\mu b'_L)(\bar\tau'_L\gamma^\mu\tau'_L)\ ,
$$

where $G = O(1)$, $G/\Lambda_{NP}^2 \ll G_F$

- When one transforms to the mass basis, this generates the operator $(\bar{b}_L \gamma_\mu s_L)(\bar{\mu}_L \gamma^\mu \mu_L)$ that contributes to $\bar{b} \to \bar{s} \mu^+ \mu^-$. The contribution to $\bar{b}\to \bar{s} e^+e^-$ is much smaller, leading to a violation of lepton flavor universality.
- GGL's point was that LFV decays, such as $B\to K\mu e$, $K\mu\tau$ and $B_s^0\to$ μ e, $\mu\tau$, are also generated.

 QQQ

R_K and $R_{D(*)}$

Assuming the scale of NP is much larger than the weak scale, the semileptonic operators should be made invariant under the full $SU(3)_C \times SU(2)_L \times U(1)_Y$ gauge group. (Bhattacharya, Datta, London, Shivshankara, 1412.7164) considered two possibilities for LH interactions:

$$
\begin{array}{rcl}\n\mathcal{O}^{NP}_1 & = & \frac{G_1}{\Lambda_{NP}^2} (\bar{Q}'_L \gamma_\mu Q'_L)(\bar{L}'_L \gamma^\mu L'_L) \;, \\
\mathcal{O}^{NP}_2 & = & \frac{G_2}{\Lambda_{NP}^2} (\bar{Q}'_L \gamma_\mu \sigma^I Q'_L)(\bar{L}'_L \gamma^\mu \sigma^I L'_L) \\
& = & \frac{G_2}{\Lambda_{NP}^2} \left[2(\bar{Q}'_L^i \gamma_\mu Q_L^{ij})(\bar{L}'_L \gamma^\mu L'_L) - (\bar{Q}'_L \gamma_\mu Q_L^j)(\bar{L}'_L \gamma^\mu L'_L) \right] \;. \n\end{array}
$$

Here $Q' \equiv (t', b')^T$ and $L' \equiv (\nu'_\tau, \tau')^T$. The key point is that \mathcal{O}_2^{NP} contains both neutral-current (NC) and charged-current (CC) interactions. The NC and CC pieces can be used to respectively explain the R_K and $R_{D(*)}$ puzzles. QQQ

UV completion

- UV completions considered by many authors e.g. L. Calibbi, A. Crivellin and T. Ota, 1506.02661 considered possible UV completions that can give rise to $\mathcal{O}_{1,2}^{\mathit{NP}}$.
- (i) a vector boson (VB) that transforms as $(1, 3, 0)$ under $SU(3)_C \times$ $SU(2)_L \times U(1)_Y$, as in the SM.
- \bullet (ii) an $SU(2)_L$ -triplet scalar leptoquark (S_3) $[(3, 3, -2/3)]$.
- \bullet (iii) an $SU(2)_L$ -singlet vector leptoquark (U_1) $[(3, 1, 4/3)]$.
- $SU(2)_I$ -triplet vector leptoquark (U_3) $[(3, 3, 4/3)]$.
- The vector boson generates only \mathcal{O}_2^{NP} , but the leptoquarks generate particular combinations of \mathcal{O}_1^{NP} and \mathcal{O}_2^{NP} . QQQ

Alakabha Datta (UMiss) [Diagnosing New Physics with LUV and LFV](#page-0-0) B Decays May 29, 2018 27 / 36

(ロ) (_何) (ヨ)

Models

- Note to simply explain $b \to s\ell^+\ell^-$ we can have Z' $(1, 1, 0)$ from $U(1)$. One can consider both $(1, 3, 0)$ and $(1, 1, 0)$.
- Models with $U(2)_q \times U_1(2)$ flavor symmetry and breaking: See for example: Dario Buttazzo, Admir Greljo, Gino Isidori David Marzocca (Zurich U.) 1706.07808.
- Many of the general features can be understood in a simple analysis.
- In models other processes get affected and so specific models are more constrained.

 Ω

 $\mathbf{A} \oplus \mathbf{B}$ $\mathbf{A} \oplus \mathbf{B}$ $\mathbf{A} \oplus \mathbf{B}$

Models: Bhattacharya, Datta, Guevin, London, Watanabe, 1609.09078

Models: Vector Bosons and Leptoqaurks.

Transform to the mass basis:

$$
u'_L = U u_L, \quad d'_L = D d_L, \quad \ell'_L = L \ell_L, \quad \nu'_L = L \nu_L,
$$

The CKM matrix is given by $\mathit{V_{CKM}} = \mathit{U}^\dagger \mathit{D}$. The assumption is that the transformations D and L involve only the second and third generations:

$$
D = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos \theta_D & \sin \theta_D \\ 0 & -\sin \theta_D & \cos \theta_D \end{pmatrix}
$$

$$
L = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos \theta_L & \sin \theta_L \\ 0 & -\sin \theta_L & \cos \theta_L \end{pmatrix}.
$$

 \cdots Alakabha Datta (UMiss) [Diagnosing New Physics with LUV and LFV](#page-0-0) B Decays 2018 29 / 36

 Ω

SM-like vector bosons

This model contains vector bosons (VBs) that transform as $(1, 3, 0)$ under $SU(3)_C \times SU(2)_L \times U(1)_Y$, as in the SM. The coupling is to only third generation. In the gauge basis, the Lagrangian describing the couplings of the VBs to left-handed third-generation fermions is

$$
{\cal L}_V \;\; = \;\; g_{qV}^{33} \left(\overline{Q}'_{L3} \; \gamma^\mu \sigma^I \; Q'_{L3} \right) V^I_\mu \; + \; g_{\ell V}^{33} \left(\overline{L}'_{L3} \; \gamma^\mu \sigma^I \; L'_{L3} \right) V^I_\mu \; .
$$

$$
\mathcal{L}_V^{eff} = -\frac{g_q^{33} g_{\ell V}^{33}}{m_V^2} \left(\overline{Q}'_{L3} \gamma^{\mu} \sigma^I \ Q'_{L3} \right) \left(\overline{L}'_{L3} \gamma_{\mu} \sigma^I L'_{L3} \right) .
$$

$$
g_1 = 0 \ , \quad g_2 = - g_{qV}^{33} g_{\ell V}^{33} \ .
$$

The VB model also generates 4 quark and 4 lepton operators that contribute to B_s mixing, $\tau \to \mu\mu\mu$ e.t.c. Variation of this model with more parameters.

 Ω

Models: allowed parameter space: $R_K \sim \sin \theta_D \cos \theta_D \sin^2 \theta_L$

VB model:
$$
g_{\text{qV}}^{33} = g_{\text{IV}}^{33} = \sqrt{0.5}
$$

$$
U_1
$$
 model: $|h_{U_1}^{33}|^2 = 1$

ا Figure 29, 2018 - Alakabha Datta (UNISS) - Alakabha Duaghosing New Physics with LUV and LPV Alakabha Datta (UMiss) [Diagnosing New Physics with LUV and LFV](#page-0-0) B Decays May 29, 2018 31 / 36

This decay is particularly interesting because only the VB model contributes to it. The present experimental bound is ${\cal B}(\tau^-\to\mu^-\mu^+\mu^-)$ $< 2.1\times 10^{-8}$ at 90% C.L. . Belle II expects to reduce this limit to $< 10^{-10}$. The reach of LHCb is somewhat weaker, $< 10^{-9}.$ Now, the amplitude for $\tau \to 3\mu$ depends only on θ_L . The allowed value of θ , corresponds to the present experimental bound. That is, VB predicts

$$
\mathcal{B}(\tau^- \to \mu^- \mu^+ \mu^-) \simeq 2.1 \times 10^{-8} .
$$

Thus, the VB model predicts that $\tau \to 3\mu$ should be observed at both LHCb and Belle II. This is a smoking-gun signal for the model.

 QQ

←ロト ←何ト ←ヨト ←ヨト

Υ Modes(Leptoquarks)

- \bullet T(3S) $\rightarrow \mu \tau$:
	- VB $\mathcal{B}(\Upsilon(3S) \to \mu \tau) \simeq 3.0 \times 10^{-9}$, U_1 : $\mathcal{B}(\Upsilon(3S) \to \mu \tau)|_{\text{max}} = 8.0 \times 10^{-7}$.

Belle II should be able to measure $\mathcal{B}(\Upsilon(3S) \to \mu \tau)$ down to $\sim 10^{-7}.$

• Even though we do not find observable effects in $b \rightarrow s\tau\tau$ or $b \rightarrow s\tau\mu$ others have have found larger effects(See for e.g. 1703.09226).

Collider Search: 1706.07808

High- p_T searches are concerned, particularly stringent bounds are set by $pp \rightarrow \tau \bar{\tau} + X$

$$
\Delta \mathcal{L}_{bb\tau\tau} = -\frac{1}{\Lambda_0^2} \left(\bar{b}_L \gamma_\mu b_L \right) \left(\bar{\tau}_L \gamma_\mu \tau_L \right) , \qquad \qquad \Lambda_0^2 = \frac{v^2}{G_1 + G_2} \ . \tag{10}
$$

The present bounds on the EFT scale Λ_0 were derived recasting different ATLAS searches for $\tau\bar{\tau}$ resonances, and read $\Lambda_0 > 0.62 \,\mathrm{TeV}$. Newer fits: $\Lambda_0 \approx 1.2$ TeV, which is well within the experimental limit.

Lepton flavor violating decays: $gg \rightarrow \tau \mu$ (1802.06082, 1802.09822) or $gg \rightarrow \bar{t} t \tau \mu$ (1412.7164).

$$
\Delta \mathcal{L}_{tt\tau\mu} = -\frac{1}{\Lambda_0^2} \left(\bar{t}_L \gamma_\mu t_L \right) \left(\bar{\tau}_L \gamma_\mu \mu_L \right) \tag{11}
$$

 Ω

(ロトス例) スミトスミドーミ

Collider Search: 1706.07808

 Z' $(1,3,0)$ is strongly constrained(ruled out) unless width is large. Z' (1, 1, 0) explaining only R_K is fine: $M_{Z'} \sim 30$ TeV.

 F_{min} F_{min} Alakabha Datta (UMiss) [Diagnosing New Physics with LUV and LFV](#page-0-0) B Day 29, 2018 35 / 36

 Ω

Conclusions

- \bullet Several anomalies in B decays indicating lepton non-universal interactions.
- **•** These anomalies may arise from the same New Physics.
- Anomalies indicate LUV. In general we should also observe LFV processes.
- **Interesting modes are** $\tau \to 3\mu$ **and** $\Upsilon(35) \to \mu\tau$ **. Observation of these** modes can point to specific models of new physics.
- Other analysis find $b \to s\tau\tau(B_s \to \tau^+\tau^-, B \to M\tau^+\tau^-)$ or $b \to s\tau\tau(B_s \to \tau^+\tau^-)$ $s\tau\mu(B \to M\tau\mu, B_s \to \tau\mu)$ also promising.

 Ω

 $\mathbf{A} \oplus \mathbf{B}$ $\mathbf{A} \oplus \mathbf{B}$ $\mathbf{A} \oplus \mathbf{B}$