### Probing collectivity in small systems using heavy quarks with CMS

Zhenyu Chen Rice University



CIPANP 2018, Palm Springs



### Omnipresent "Ridge"



#### What is the origin of the "Ridge" in small system? A small droplet of QGP? Other QCD effect (CGC)?



Collectivity of bulk particle production in small systems

#### Hydrodynamic models



Collectivity of bulk particle production in small systems

#### **Color Glass Condensate models**



Collectivity of bulk particle production in small systems

#### **Color Glass Condensate models**



Collectivity of bulk particle production in small systems What about heavier quarks (i.e., *c,b*)?

### Heavy quarks in QGP



Charms expected to flow!!

Charms thermalized in AA!?

#### **Collectivity for heavy quarks in small system?**



Interaction with a (tiny) QGP? region with a (tiny) QGP?<math>region 227 = 0Thermalization for a small size?

e.g., in *pA/pp* 

#### **Collectivity for heavy quarks in small system?**



Interaction with a (tiny) QGP? rightarrow a (intro) of a construction with a (intro) of a small size?

e.g., in *pA/pp* 

A new window for initial correlations?

(Y. Ma et. al., arXiv:1803.11093)

#### **Collectivity for heavy quarks in small system?**



Interaction with a (tiny) QGP? -  $(D^0$  Thermalization for a small size?

e.g., in *pA/pp* 

#### $\mathbf{OR}$

A new window for initial correlations?

(Y. Ma et. al., arXiv:1803.11093)

Comparing to *bulk system* (light quarks/gluons)

## $K^{0}_{s}, \Lambda, \underline{\Xi}, \underline{\Omega}$

#### **Collectivity for heavy quarks in small system?**



Interaction with a (tiny) QGP?  $(D^0)$  Thermalization for a small size?

e.g., in *pA/pp* 

#### $\mathbf{OR}$

A new window for initial correlations?

(Y. Ma et. al., arXiv:1803.11093)

Comparing to *bulk system* (light quarks/gluons)

### $K^{0}_{s}, \Lambda, \Xi^{-}, \Omega^{-}$

(also first time in small systems)

### D<sup>0</sup> meson in pPb at CMS



### D<sup>0</sup> – charged hadron correlations



### D<sup>0</sup> – charged hadron correlations

 $185 \le N_{trk} < 250$ 



### Strange and charm hadron v<sub>2</sub> in pPb



Mass ordering for light, strange hadrons

### Strange and charm hadron v<sub>2</sub> in pPb



Significant D<sup>0</sup> v<sub>2</sub>, follow mass ordering at low  $p_T$ D<sup>0</sup> similar to K<sup>0</sup><sub>s</sub> (both mesons) at higher  $p_T$ 

### Strange and charm hadron v<sub>2</sub> in pPb



Significant D<sup>0</sup> v<sub>2</sub>, follow mass ordering at low  $p_T$ D<sup>0</sup> similar to K<sup>0</sup><sub>s</sub> (both mesons) at higher  $p_T$ 



#### Approx. scaling for strange hadrons



Approx. scaling for strange hadrons  $D^0 v_2$  consistently lower  $\rightarrow v_2(c) < v_2(u,d,s)$ 



Approx. scaling for strange hadrons  $D^0 v_2$  consistently lower  $\rightarrow v_2(c) < v_2(u,d,s)$ Different behavior than observation in PbPb



#### In hydro-QGP picture:

Less flow/thermalization for charm quarks in pPb due to a much reduced small system size?

Interpretations in CGC/glasma picture?

### One more thing ...

Collectivity of *Charmonia* in small system?

- $\frac{c}{c}$   $\frac{c}{c}$   $J/\Psi$
- Recombination of flowing *c*<sup>2</sup> Initial correlations from Glamsa?



### One more thing ...

۲<sup>۲</sup>

0.2

Collectivity of *Charmonia* in small system?

- J/Ψ
- Recombination of flowing *cc* Initial correlations from Glamsa?

V.S.

 $v_2(c) < v_2(u,d,s)$ 



ALICE p-Pb

(0-20%)-(40-100%) VOM

v<sub>2</sub><sup>J/ψ</sup>{2,sub}, 1.5<I∆ηI<5.0

Inclusive J/Ψ from ALICE

✓ s<sub>NN</sub>=5.02 TeV

-4.46<y<sup>J/ψ</sup><-2.96

### <u>J/ $\Psi(\rightarrow \mu^+\mu^-)$ reconstruction in pPb</u>

CMS-PAS-HIN-18-010

#### High-multiplicity pPb (185 $\leq$ N<sub>trk</sub> < 250)



Good efficiency down to  $p_T \sim 0$  GeV at forward  $1.4 < |y_{lab}| < 2.4$ 

Residual: ~ 5% (systematics)

#### <u>Prompt J/Ψ meson v<sub>2</sub> in pPb</u>



Significant J/ $\Psi$  v<sub>2</sub>  $\Rightarrow$  most direct evidence of charm v<sub>2</sub> J/ $\Psi$  comparable to D<sup>0</sup>? Both below light flavor K<sup>0</sup><sub>s</sub>

#### Prompt J/Ψ meson v<sub>2</sub> in pPb



As a function of  $KE_T$  $v_2(D^0) \approx v_2(J/\Psi) < v_2(K^0_s)$ ?

#### Prompt J/Ψ meson v<sub>2</sub> in pPb



### <u>Summary</u>

New results of charm ( $D^0$ ,  $J/\Psi$ ) and strange flow in pPb



Clear observation of  $v_2$  signal for charm quarks

- Weaker collectivity than light quarks
- Different behavior from larger PbPb system

New insights to the origin of "Ridge" in small systems (esp. with better precision, *bottom;* also in pp in the future)

# Backups

#### J/Ψ – charged hadron correlation



### Strange hadron reconstruction



#### Well established in many earlier measurements

### D<sup>0</sup> meson in pPb at CMS

#### Suppress nonprompt D<sup>0</sup> from B mesons





![](_page_33_Figure_0.jpeg)

![](_page_34_Figure_0.jpeg)

![](_page_35_Figure_0.jpeg)

![](_page_36_Figure_1.jpeg)

Approx. scaling for strange hadrons except for  $\Omega$ ? Or  $\varphi$ ?