

Deutsche Forschungsgemeinschaft

New Formulation of the $\gamma \text{W-box}$ correction to neutron and nuclear $\beta\text{-decay}$

Misha Gorshteyn – Mainz University

In collaboration with

Michael Ramsey-Musolf, Chien Yeah Seng Hiren Patel

CIPANP 2018 - Palm Springs, CA - May 29-June3 2018

Outline

- Beta decay in presence of RC
- Dispersive representation of the γ W-box
- Physics input to the dispersion integral
- Nuclear effects
- \bullet New formulation of RC for V_{ud} extraction
- Can nuclear effects turn the inner correction inside-out?

Neutron β-decay in presence of RC

Beyond RC that enter the Fermi constant:

Sirlin '67, Marciano & Sirlin '86 ...

Coulomb distortion - Fermi fn. "Inner" correction - $F(\beta) \approx 1 + \alpha \pi / \beta$ depends on hadron structure; independent of kinematics $\frac{d\Gamma}{dE_e d\Omega_e d\Omega_\nu} = \frac{G_\mu^2 V_{ud}^2}{(2\pi)^5} (1+3\lambda^2) |\vec{p_e}| E_e (E_m - E_e)^2 F(\beta) (1 + \frac{\alpha}{\pi} \operatorname{Re}^{\vee} c) (1 + \frac{\alpha}{2\pi} \delta^{(1)}) \times \left[1 + \left(1 + \frac{\alpha}{2\pi} \delta^{(2)}_{\parallel}\right) a \vec{\beta} \cdot \hat{p}_{\nu} + \hat{s} \cdot \left(\left(1 + \frac{\alpha}{2\pi} \delta^{(2)}_{\parallel}\right) A \vec{\beta} + B \hat{p}_{\nu} \right) \right]$ "Outer" corrections - IR-sensitive; depend on kinematics; independent of hadronic structure Exactly calculable

Separation due to scale hierarchy: Q-values from <1 keV (n) to few MeV (nuclei); Hadronic scales: at least 140 MeV – on top of $\alpha/2\pi \sim 10^{-3}$ —> 10⁻⁵ effect <<

Wilkinson '82, Severijns et al. '17

Radiative corrections - In & Out

1-loop RC (specific for a semiletonic process)

Outer: retain only IR divergent pieces

W,Z-exchange: UV-sensitive, pQCD; model-independent $q m_W^2 v^2 - q^2$ When γ involved – possible sensitivity to long range physics Model-dependent! $\int \frac{d^4q}{(2\pi)^4} e^{iq \cdot x} p T \{J^{\mu}_{em}(x) (J^{\nu}_{W}(0))_{A}\} n = \frac{i\varepsilon^{\mu\nu\alpha\beta}}{2m}$

γ W-box

Consider the box at zero energy and zero momentum transfer

$$T_{\gamma W} = \sqrt{2}e^{2}G_{F}V_{ud} \int \frac{d^{4}q}{(2\pi)^{4}} \frac{\bar{u}_{e}\gamma^{\mu}(\not{k}-\not{q}+m_{e})\gamma^{\nu}(\not{k}e)_{md} = \sqrt[3]{2}}{q^{2}[(k-q)^{2}-m_{e}^{2}]} \frac{d^{4}q}{q^{2}} \frac{m_{w}^{2}}{M_{w}^{2}} \frac{\sqrt[3]{2}}{(q^{2})^{2}} \gamma^{Wh_{N}\nu}}{q^{2}-M_{W}^{2}} \int_{\mu\nu}^{d^{4}q} \frac{m_{w}^{2}}{q^{2}-M_{W}^{2}} \frac{d^{4}q}{(q^{2})^{2}} \gamma^{Wh_{N}\nu}}{q^{2}-M_{W}^{2}} \int_{\mu\nu}^{d^{4}q} \frac{m_{w}^{2}}{q^{2}-M_{W}^{2}} \int_{\mu\nu}$$

General gauge-invariant decomposition (spin-independent)

$$T_{\gamma W}^{\mu\nu} = \left(-g^{\mu\nu} + \frac{q^{\mu}q^{\nu}}{q^2}\right)T_1 + \frac{1}{(p \cdot q)}\left(p - \frac{(p \cdot q)}{q^2}q\right)^{\mu}\left(p - \frac{(p \cdot q)}{q^2}q\right)^{\nu}T_2 + \frac{i\epsilon^{\mu\nu\alpha\beta}p_{\alpha}q_{\beta}}{2(p \cdot q)}T_3$$

γ W-box

Consider the box at zero energy and zero momentum transfer

$$T_{\gamma W} = \sqrt{2}e^{2}G_{F}V_{ud} \int \frac{d^{4}q}{(2\pi)^{4}} \frac{\bar{u}_{e}\gamma^{\mu}(\not{k}-\not{q}+m_{e})\gamma^{\nu}(\not{k}e)_{md} - y_{5}^{2}}{q^{2}[(k-q)^{2}-m_{e}^{2}]} \frac{d^{4}q}{q^{2}[(k-q)^{2}-m_{e}^{2}]}{q^{2}-M_{W}^{2}} \frac{q^{2}}{q^{2}} T_{\mu\nu}^{\gamma Wh_{N}\nu}}{q^{2}-M_{W}^{2}}$$
Hadronic tensor: two-current correlator
$$T_{\gamma W}^{\mu\nu} = \int_{0}^{d^{4}q} dx e^{iqx} \langle p|T[J_{em}^{\mu}(x)J_{W}^{\nu}(0)]|n\rangle$$

General gauge-invariant decomposition (spin-independent)

$$T_{\gamma W}^{\mu\nu} = \left(-g^{\mu\nu} + \frac{q^{\mu}q^{\nu}}{q^2}\right)T_1 + \frac{1}{(p \cdot q)} \left(p - \frac{(p \cdot q)}{q^2}q\right)^{\mu} \left(p - \frac{(p - q)}{q^2}q\right)^{\nu}T_2 + \frac{i\epsilon^{\mu\nu\alpha\beta}p_{\alpha}q_{\beta}}{2(p \cdot q)}T_3$$

V-V correlator is cancelled exactly By the 3-current correlator – Sirlin '67 Reason: conserved vector-isovector current. h' h'

γ W-box

Consider the box at zero energy and zero momentum transfer Define the box contribution as $T_W + T_{\gamma W}^{VA} = -\sqrt{2}G_F V_{ud} \left(1 + \Box_{\gamma W}^{VA}\right) \bar{u}_e \not p (1 - \gamma_5) v_\nu$ $(\operatorname{Rec})_{md} = 8\pi^2 \operatorname{Re} \int \frac{d^4 q}{(2\pi)^4} \frac{m_W^2 \vee \nu \doteq -\langle p q \rangle}{m_W^2 - q^2} \frac{d^2 p}{(q^2)^2} \frac{m_N \nu}{m_N \nu}$ Loop integral with T₃ $\Box_{\gamma W}^{VA} = 4\pi \alpha \operatorname{Re} \int \frac{d^4 q}{(2\pi)^4} \frac{m_W^2 + Q^2}{M_W^2} \frac{Q^2 + \nu^2}{Q^4} \frac{T_3(\nu, Q^2)}{M_V}$

Forward amplitude T_3 – unknown; Its absorptive part could be related to production of on-shell intermediate states a γ W-analog of the SF F₃

 ${\rm Im}\, T_3^{\gamma W}(\nu,Q^2) = 2\pi F_3^{\gamma W}(\nu,Q^2)$

$$\text{Dis}T_{3}^{(0)}(v,Q^{2}) = 4\pi F_{3}^{(0)}(v,Q^{2})$$

$$\sum (2\pi)^{4} \delta^{4}(p+q-p_{X}) p J_{EM,0}^{\mu} X X \left(J_{W}^{\nu}\right)_{A} n = \frac{i\varepsilon^{\mu\nu\alpha\beta}}{2} p_{\alpha}q_{\beta} F_{3}^{(0)}(v,Q^{2})$$

γ W-box in dispersion representation

 $T_3 - \underset{W}{a}$ analytic function inside the contour C in the complex v-plane determined by its singularities on the real axis – poles + cuts

$$p \quad T_{\mathcal{P}}(\nu, Q^2) = \frac{1}{2\pi i} \oint_C \frac{T_3(z, Q^2)dz}{z - \nu} \quad \nu \in C$$

$$\operatorname{Dis} T_{3}^{(0)}(v,Q^{2}) = 4\pi F_{3}^{(0)}(v,Q^{2})$$

$$\frac{1}{4\pi} \sum_{X} (2\pi)^{4} \delta^{4}(p+q-p_{X}) p J_{EM,0}^{\mu} X X \left(J_{W}^{\nu}\right)_{A} n = \frac{i\varepsilon^{\mu\nu\alpha\beta} p_{\alpha}q_{\beta}}{2m_{N}\nu} F_{3}^{(0)}(v,Q^{2})$$

р

γ W-box in dispersion representation

 $T_3 - \underset{W}{a}$ analytic function inside the contour C in the complex v-plane determined by its singularities on the real axis – poles + cuts

$$p \quad T_{P3}(\nu, Q^2) = \frac{1}{\frac{p}{2\pi i}} \oint_C \frac{T_3(z, Q^2)dz}{z - \nu} \quad \nu \in C$$

Crossing behavior: photon is isoscalar or isovector $T_3^{\gamma W} = T_3^{(0)} + T_3^{(3)}$ Different isospin channels behave differently under crossing

$$T_{3}^{(0)}(\underline{-}_{\nu}^{i}, \underline{Q}^{2}) = T_{3}^{\mu}(\underline{P}, \underline{Q}^{2}), \quad T_{3}^{(3)}(-\nu, Q^{2}) = +T_{3}^{(3)}(\nu, Q^{2})$$

$$\frac{1}{4\pi} \sum_{X} (2\pi)^{4} \delta^{4}(p+q-p_{X}) p J_{EM,0}^{\mu} X X (J_{W}^{\nu})_{A} n = \frac{i\varepsilon^{\mu\nu\alpha\beta}p_{\alpha}q_{\beta}}{2m_{N}\nu} F_{3}^{(0)}(\nu, Q^{2})$$

p

γ W-box in dispersion representation

 $T_3 - \underset{V}{a}$ analytic function inside the contour C in the complex v-plane determined by its singularities on the real axis – poles + cuts

$$p \quad T_{\mathcal{P}}(\nu, Q^2) = \frac{1}{\frac{p}{2\pi i}} \oint_C \frac{T_3(z, Q^2)dz}{z - \nu} \quad \nu \in C$$

Crossing behavior: photon is isoscalar or isovector $T_3^{\gamma W} = T_3^{(0)} + T_3^{(3)}$ Different isospin channels behave differently under crossing

 $T_{3}^{(0)}(\underline{Pis}_{X}T_{Q}^{(0)}(\nu,\underline{Q}^{2})=T_{3}^{(\mu\nu)}(\nu,\underline{Q}^{2}), \quad T_{3}^{(3)}(-\nu,Q^{2})=+T_{3}^{(3)}(\nu,Q^{2})$ $\frac{1}{4\pi}\sum_{X}(2\pi)^{4}\delta^{4}(p+q-p_{X}) p J_{EM,0}^{\mu} X X (J_{W}^{\nu})_{A} n = \frac{i\varepsilon^{\mu\nu\alpha\beta}p_{\alpha}q_{\beta}}{2m_{N}\nu}F_{3}^{(0)}(\nu,Q^{2})$ Dispersion representation of the γ W-box correction at zero energy

p

$$\Box_{\gamma W}^{VA\,(0)} = \frac{\alpha}{\pi M} \int_0^\infty \frac{dQ^2 M_W^2}{M_W^2 + Q^2} \int_0^\infty d\nu \frac{(\nu + 2q)}{\nu(\nu + q)^2} F_3^{(0)}(\nu, Q^2),$$

$$\Box_{\gamma W}^{VA\,(3)} = 0,$$

 $q = \sqrt{\nu^2 + Q^2}$

Relation to the old Marciano & Sirlin's result:

$$\Box_{\gamma W}^{VA} = \frac{\alpha}{8\pi} \int_0^\infty \frac{dQ^2 M_W^2}{M_W^2 + Q^2} F(Q^2)$$

Dispersion representation of M&S loop function F:

$$F(Q^2) = \int_0^\infty d\nu \frac{8(\nu + 2q)}{M\nu(\nu + q)^2} F_3^{(0)}(\nu, Q^2)$$

Input into dispersion integral

Dispersion in Q²: scanning dominant physics pictures

For each value of Q^2 we can relate F to particular hadronic processes F can be related to exp. accessible cross sections

$$\operatorname{Im} \left[W^{+*} + n \to \gamma^* + p \right] \leftrightarrow \begin{cases} \sigma(\gamma^* + p \to X) \\ \sigma(W^{+*} + n \to X) \end{cases}$$

M&S treatment

What can be improved? * what is the physics content of the interpolating function? * are the M&S constraints on F_{int} justified?

Elastic (Born) contribution

$$\Box_{\gamma W}^{VA,\text{Born}} = -\frac{\alpha}{\pi} \int_0^\infty dQ \frac{2\sqrt{4M^2 + Q^2} + Q}{\left(\sqrt{4M^2 + Q^2} + Q\right)^2} G_A(Q^2) G_M^S(Q^2)$$

$$W = \begin{cases} \gamma \\ \gamma \\ - \\ G_A \\ G_M^s \\ G_M^s \\ G_M^s \\ G_M^s \\ G_M^s \\ G_M^s \\ G_A \\ G_A$$

M & S

$$\left.\Box_{\gamma W}^{VA,\text{Born}}\right|_{\text{MS}} = \frac{\alpha}{2\pi} (0.829 \pm 0.083)$$

New evaluation

$$\Box_{\gamma W}^{VA,\text{Born}} = \frac{\alpha}{2\pi} (0.908 \pm 0.049)$$

Central value: two dipoles integrated to (0.823 GeV)² Uncertainty: vary axial dipole masses between 1 and 1.4 GeV

Central value: full Q² integral with most recent FF parametrization Uncertainty: from recent analyses Magnetic FF: Ye, Arrington, Hill, Lee '18 Axial FF: Bhachatarya, Hill, Paz '11

Inelastic contributions $\Box_{\gamma W}^{Inel.} = \frac{\alpha}{\pi} \int_0^\infty \frac{dQ^2}{1 + \frac{Q^2}{M_W^2}} \int_{\nu_\pi}^\infty \frac{d\nu}{(\nu+q)^2} \frac{\nu+2q}{M\nu} F_3^{(0),inel.}$

Split the Q^2 integral: above (1.5 GeV)² – DIS; below – hadronic stuff

Inelastic contributions $\Box_{\gamma W}^{Inel.} = \frac{\alpha}{\pi} \int_0^\infty \frac{dQ^2}{1 + \frac{Q^2}{M_W^2}} \int_{\nu_{\pi}}^\infty \frac{d\nu}{(\nu+q)^2} \frac{\nu+2q}{M\nu} F_3^{(0),inel.}$ Split the Q² integral: above (1.5 GeV)² – DIS; below – hadronic stuff

DIS contribution
$$\Box_{\gamma W}^{\text{DIS}} = \frac{2\alpha}{\pi} \int_{\Lambda^2}^{\infty} \frac{dQ^2 M_W^2}{Q^2 (Q^2 + M_W^2)} \int_0^{x_\pi} dx \frac{1 + 2\sqrt{1 + 4M^2 x^2/Q^2}}{(1 + \sqrt{1 + 4M^2 x^2/Q^2})^2} F_3^{(0)}(x, Q^2)$$

Inelastic contributions $\Box_{\gamma W}^{Inel.} = \frac{\alpha}{\pi} \int_0^\infty \frac{dQ^2}{1 + \frac{Q^2}{M_W^2}} \int_{\nu_{\pi}}^\infty \frac{d\nu}{(\nu+q)^2} \frac{\nu+2q}{M\nu} F_3^{(0),inel.}$ Split the Q² integral: above (1.5 GeV)² – DIS; below – hadronic stuff

DIS contribution
$$\Box_{\gamma W}^{\text{DIS}} = \frac{2\alpha}{\pi} \int_{\Lambda^2}^{\infty} \frac{dQ^2 M_W^2}{Q^2 (Q^2 + M_W^2)} \int_0^{x_\pi} dx \frac{1 + 2\sqrt{1 + 4M^2 x^2/Q^2}}{(1 + \sqrt{1 + 4M^2 x^2/Q^2})^2} F_3^{(0)}(x, Q^2)$$

Parton model:
$$F_3^{(0)}(x) = \frac{e_u + e_d}{8}(d(x) - \bar{u}(x))$$
 $\int_0^1 dx d_v(x) = 2$

 $M/Q \rightarrow 0$; loop function becomes F^{I}

 $F^{\rm DIS}(Q^2) = \frac{1}{Q^2}$

Large log:
$$\Box_{\gamma W}^{\text{DIS}} = \frac{\alpha}{8\pi} \int_{\Lambda^2}^{\infty} \frac{dQ^2 M_W^2}{M_W^2 + Q^2} F^{\text{DIS}}(Q^2) = \frac{\alpha}{4\pi} \ln \frac{M_W}{\Lambda}$$

Inelastic contributions $\Box_{\gamma W}^{Inel.} = \frac{\alpha}{\pi} \int_0^\infty \frac{dQ^2}{1 + \frac{Q^2}{M_W^2}} \int_{\nu_{\pi}}^\infty \frac{d\nu}{(\nu+q)^2} \frac{\nu+2q}{M\nu} F_3^{(0),inel.}$ Split the Q² integral: above (1.5 GeV)² – DIS; below – hadronic stuff

DIS contribution
$$\Box_{\gamma W}^{\text{DIS}} = \frac{2\alpha}{\pi} \int_{\Lambda^2}^{\infty} \frac{dQ^2 M_W^2}{Q^2 (Q^2 + M_W^2)} \int_0^{x_\pi} dx \frac{1 + 2\sqrt{1 + 4M^2 x^2/Q^2}}{(1 + \sqrt{1 + 4M^2 x^2/Q^2})^2} F_3^{(0)}(x, Q^2)$$

Parton model:
$$F_3^{(0)}(x) = \frac{e_u + e_d}{8}(d(x) - \bar{u}(x))$$
 $\int_0^1 dx d_v(x) = 2$

M/Q -> 0; loop function becomes

$$F^{\rm DIS}(Q^2) = \frac{1}{Q^2}$$

Large log:
$$\Box_{\gamma W}^{\text{DIS}} = \frac{\alpha}{8\pi} \int_{\Lambda^2}^{\infty} \frac{dQ^2 M_W^2}{M_W^2 + Q^2} F^{\text{DIS}}(Q^2) = \frac{\alpha}{4\pi} \ln \frac{M_W}{\Lambda}$$

pQCD corrections: $F^{\text{DIS}} = \frac{1}{Q^2} \rightarrow \frac{1}{Q^2} \left[1 - \frac{\alpha_s^{\overline{MS}}}{\pi} \right]$ cf. GLS and Bjorken SR

$$\frac{1}{Q^2} \to \frac{1}{Q^2} \left[1 - \frac{\alpha_s^{\overline{MS}}}{\pi} - C_2 \left(\frac{\alpha_s^{\overline{MS}}}{\pi} \right)^2 - C_3 \left(\frac{\alpha_s^{\overline{MS}}}{\pi} \right)^3 \right]$$

M&S '06; Larin, Vermaseren '97

$$\Box_{\gamma W}^{\text{DIS}} = \frac{\alpha}{4\pi} [4.11 - 0.34] = \frac{\alpha}{2\pi} 1.84(0)$$

Uncertainty: virtually zero

The DIS contribution can be validated by data Use the Gross-Llewellyn-Smith sum rule (GLS SR) in nu/anti-nu scattering

$$\frac{d^2 \sigma^{\nu(\bar{\nu})}}{dx dy} = \frac{G_F^2 M E}{\pi} \left[x y^2 F_1 + \left(1 - y - \frac{M x y}{2E} \right) F_2 \pm x \left(y - \frac{y^2}{2} \right) F_3 \right]$$

$$\sigma^{\nu p} - \sigma^{\bar{\nu} p} \sim F_3^{\nu p} + F_3^{\bar{\nu} p} = u_v^p(x) + d_v^p(x) \qquad \qquad \int_0^1 dx (u_v^p(x) + d_v^p(x)) = 3$$

M&S interpolating contribution

Constraints:

I
$$F^{\text{INT}}(\Lambda^2) = F^{\text{DIS}}(\Lambda^2)$$

II
$$F^{\text{INT}}((0.823 \,\text{GeV})^2) = F^{\text{Born}}((0.823 \,\text{GeV})^2)$$

III
$$F^{\text{INT}}(0) = 0.$$

$$\Box_{\gamma W}^{VA\,(0)} = \frac{\alpha}{8\pi} \int_{Q_2^2}^{\Lambda^2} dQ^2 F^{\rm INT}(Q^2)$$

3 Eqs. -> 3 free parameters $F^{\text{INT}}(Q^2) = -\frac{1.490}{Q^2 + m_{\rho}^2} + \frac{6.855}{Q^2 + m_A^2} - \frac{4.414}{Q^2 + m_{\rho'}^2}$

Only constraint I is justified!

II: no reason Born is the whole story below some arbitrary Q² III: M&S claim it is required by chiral symmetry

Check in ChPT at one-loop $\int_{\nu_{\pi}}^{\infty} \frac{d\nu}{\nu^2} F_3^{(0)}(\nu, Q^2 = 0) = \left. \frac{2M}{Q^2} \int_0^{x_{\pi}} F_3^{(0)}(x, Q^2) \right|_{Q^2 \to 0} = 0$

To visualize: change integration variable to $z=
u_{\pi}/
u$

$$\int_{\nu_{\pi}}^{\infty} \frac{d\nu\nu_{\pi}}{\nu^2} F_3^{(0)}(\nu, Q^2 = 0) = \int_0^1 dz F_3^{(0)}(\nu_{\pi}/z, Q^2 = 0)$$

Inelastic states beyond DIS

 πN contribution to the box:

$$\Box_{\gamma W}^{\pi N} = \frac{\alpha}{2\pi} 0.044(4)$$

I=1/2 resonances: tiny contribution!

$$\Box_{\gamma W}^{Res} \le \frac{\alpha}{2\pi} 0.01$$

Inelastic states beyond DIS

Regge exchange

 $F_3^{(0),\text{Regge}}(\nu,Q^2) = C_R(Q^2) \left(\frac{\nu}{\nu_0}\right)^{\alpha_{\rho}}$

Vector/axial vector dominance: Stodolsky, Piketty '70

Guidance from GLS sum rule: CC process, A-V interference

Only overall normalization is changed! Match to pQCD at $Q^2=2GeV^2$ VDM + fit to (few) $low-Q^2$ data below

 $C_R(Q^2) = C_R^{\text{VDM}}(Q^2) \times h(Q^2)$

Deduce $h(Q^2)$, $\Delta h(Q^2)$ from data!

$$\Box_{\gamma W}^{\text{Regge}} = \frac{\alpha}{2\pi} 0.238(14)$$

γW-box on free neutron

Marciano & Sirlin '06

$$\Box_{\gamma W}^{VA} = \frac{\alpha}{2\pi} [c_B + c_{int} + c_{DIS}] = \frac{\alpha}{2\pi} [0.83(8) + 0.14(14) + 1.84(0)]$$

$$\Box_{\gamma W}^{MS} = \frac{\alpha}{2\pi} 2.79(17) = 3.24(20) \times 10^{-3}$$

New evaluation

$$\Box_{\gamma W}^{VA} = \frac{\alpha}{2\pi} [c_B + c_{piN} + c_{\text{Res}} + c_{\text{Regge}} + c_{DIS}] = \frac{\alpha}{2\pi} [0.91(5) + 0.044(5) + 0.01(1) + 0.238(14) + 1.84(0)]$$

$$\Box_{\gamma W}^{\text{New}} = \frac{\alpha}{2\pi} 3.03(5) = 3.51(6) \times 10^{-3}$$

 V_{ud} from free n: about 1 sigma smaller

Numbers are preliminary but all crucial ingredients are in place. Central value shifted by 1 sigma; uncertainty is likely to be reduced by factor 3

Currently the uncertainty for neutron decay is dominated by the experiment

General structure of RC for nuclear decay (see John's talk)

 $1 + \mathrm{RC} = (1 + \delta_R)(1 - \delta_C)(1 + \Delta).$

General structure of RC for nuclear decay (see John's talk)

General structure of RC for nuclear decay (see John's talk)

General structure of RC for nuclear decay (see John's talk)

General structure of RC for nuclear decay (see John's talk)

Nuclear Green fn: only with 2 active N

General structure of RC for nuclear decay (see John's talk)

Nuclear Green fn: only with 2 active N

QE contribution to yW-box

Bulk nuclear properties: Fermi momentum and break-up threshold 20 decays: ¹⁰C -> ¹⁰B through ⁷⁴Rb -> ⁷⁴Kr (Towner&Hardy '14 review)

Effective removal energies – all in a small range $\overline{\epsilon} = 7.68 \pm 1.32 \text{ MeV}$

Fermi momentum also not too different for all A $k_F(A = 10) = 228 \text{ MeV}, \quad k_F(A = 74) = 245 \text{ MeV}$

Can define a universal correction that correctly represents bulk nuclear effect!

Further ingredients: Free Fermi gas model (or superscaling) + Pauli blocking

$\overline{\epsilon} =$	$\sqrt{\epsilon_1\epsilon_2}$

Decay	$\epsilon_2 ({\rm MeV})$	$\epsilon_1 \ ({\rm MeV})$	$\overline{\epsilon} \ (MeV)$
$^{10}C \rightarrow^{10} B$	8.44	4.79	6.36
$^{14}O \rightarrow^{14} N$	10.55	5.41	7.55
$^{18}Ne \rightarrow ^{18}F$	9.15	4.71	6.56
$^{22}Mg \rightarrow^{22} Na$	11.07	6.28	8.34
$^{26}Si \rightarrow^{26}Al$	11.36	6.30	8.46
$^{30}S \rightarrow ^{30}P$	11.32	5.18	7.66
$^{34}Ar \rightarrow ^{34}Cl$	11.51	5.44	7.91
$^{38}Ca \rightarrow ^{38}K$	12.07	5.33	8.02
$^{42}Ti \rightarrow ^{42}Sc$	11.55	4.55	7.25
$^{26m}Al \rightarrow^{26} Mg$	11.09	6.86	8.72
$^{34}Cl \rightarrow ^{34}S$	11.42	5.92	8.22
$^{38m}K \rightarrow^{38}Ar$	11.84	5.79	8.28
$^{42}Sc \rightarrow ^{42}Ca$	11.48	5.05	7.61
${}^{46}Va \rightarrow {}^{46}Ti$	13.19	6.14	9.00
$^{50}Mn \rightarrow ^{50}Cr$	13.00	5.37	8.35
$^{54}Co \rightarrow ^{54}Fe$	13.38	5.13	8.28
$^{62}Ga \rightarrow ^{62}Zn$	12.90	3.72	6.94
$^{66}As \rightarrow ^{66}Ge$	13.29	3.16	6.48
$^{70}Br \rightarrow ^{70}Se$	13.82	3.20	6.65
$^{74}Rb \rightarrow^{74}Kr$	13.85	3.44	6.90

QE contribution to yW-box

 $\boldsymbol{\alpha}$

$$\gamma \text{W-box for bound neutron:} \qquad \Box_{\gamma W}^{\text{free n}} = \frac{\alpha}{2\pi} 0.91(5) \rightarrow \Box_{\gamma W}^{\text{QE}} = \frac{\alpha}{2\pi} 0.44(4)$$
Reduction: finite breakup threshold
$$\int_{\frac{Q^2}{2M}} \frac{d\nu}{\nu^2} F_3^n \rightarrow \int_{\frac{Q^2}{2M_A} + \overline{\epsilon}} \frac{d\nu}{\nu^2} F_3^{\text{Nucl}}$$
New formulation of the NW-box:

New formulation of the γ W-box:

$$\Box_{\gamma W}^{MS} = \frac{\alpha}{2\pi} 2.79(17) = 3.24(20) \times 10^{-3}$$
$$\Box_{\gamma W}^{\text{Nucl. New}} = \frac{\alpha}{2\pi} 2.56(4) = 2.97(5) \times 10^{-3}$$

A mere shift by 1 sigma; uncertainty significantly reduced. Nuclear Structure corrections should be revisited and possibly redefined

 V_{ud} from superallowed β : 1 sigma larger

Summary

- New dispersive representation of the γ W-box
- Data driven uncertainties
- Crucial input: GLS sum rule
- New formulation of RC for V_{ud} extraction:
 overall small effect; uncertainty significantly reduced
- Nuclear Structure corrections may need to be reformulated
- Backup: can nuclear structure effects lead to additional energy dependence?

Turn "inner" correction inside-out?

 γ W-box correction at zero energy

$$\Box_{\gamma W}^{VA(0)} = \frac{\alpha}{\pi M} \int_0^\infty \frac{dQ^2 M_W^2}{M_W^2 + Q^2} \int_0^\infty d\nu \frac{(\nu + 2q)}{\nu(\nu + q)^2} F_3^{(0)}(\nu, Q^2),$$

$$\Box_{\gamma W}^{VA(3)} = 0,$$

 $E = -(\nu + \sqrt{\nu^2 + O^2})/2$

 γ W-box correction with linear E-dependece

$$\operatorname{Re}\overline{\Box_{\gamma W}^{even}} = \frac{\alpha_{em}}{\pi} \int_{\nu_{thr}}^{\infty} d\nu \int_{0}^{\infty} dQ^{2} \frac{F_{3}^{(0)}}{2M\nu} \left(\frac{1}{E_{min}} - \frac{\nu}{4E_{min}^{2}} \right),$$

$$\operatorname{Re}\overline{\Box_{\gamma W}^{odd}} = \frac{\alpha_{em}}{\pi} E \int_{\nu_{thr}}^{\infty} d\nu \int_{0}^{\infty} dQ^{2} \left[\frac{F_{1}^{(0)}}{6ME_{min}^{3}} + \left(\frac{\sqrt{\nu^{2} + Q^{2}}}{2E_{min}^{2}\nu Q^{2}} - \frac{1}{12E_{min}^{3}} \nu \right) F_{2}^{(0)} + \frac{F_{3}^{(-)}}{2M\nu} \left(\frac{1}{2E_{min}^{2}} - \frac{\nu}{6E_{min}^{3}} \right) \right]$$

Common wisdom: E-dep. negligible because should come as ($\alpha/2\pi$) E/m $_{\pi}$ < 10⁻⁵ But nuclear excitations live at few MeV —> large nuclear polarizabilities

$$\alpha_E + \beta_M = \left. \frac{2\alpha_{em}}{M} \int \frac{d\omega}{\omega^3} F_1(\omega, Q^2 = 0) = 2\alpha_{em} \int \frac{d\omega}{\omega^2} \left. \frac{F_2(\omega, Q^2)}{Q^2} \right|_{Q^2 = 0}$$

New energy scale: polarizability/radius² Re $\Box_{\gamma W}^{odd} \sim \frac{2}{\pi} E \frac{\alpha_E + \beta_M}{R_{Ch}^2}$ $R_{Ch} \sim 1.2 \text{fm} A^{1/3}$ $\alpha_E \sim (2.2 \times 10^{-3} \text{ fm}) A^{5/3}$ Expect Re $\Box_{\gamma W}^{odd} \sim 1 \times 10^{-3} \left(\frac{E}{5 \text{ MeV}}\right) \left(\frac{A}{30}\right)$