

Parity Violating Electron Scattering Experiments for an Ultra Precise Determination of the Weak Mixing Angle $\sin^2 \theta_w$ at Low Energies

Frank Maas (Helmholtz Institute Mainz, PRISMA cluster of excellence, Johannes Gutenberg University Mainz)

CIPANP 2018 - Thirteenth Conference on the Intersections of Particle and Nuclear Physics, 29 May 2018 - 3 June 2018, Hyatt Regency Indian Wells Conference Center

Direct observation versus precision measurements: top-quark, Higgs

Direct measurements: $M_{\rm H} = 125.14 \pm 0.15 \; {\rm GeV}$

Indirect prediction: $M_{\rm H} = 90^{+17}_{-16} \, {\rm GeV}$ $m_{\mathrm{t}} = 176.4 \pm 1.8 \; \mathrm{GeV}$

The role of the weak mixing angle

The relative strength between the weak and electromagnetic interaction is determined by the weak mixing angle: $sin^2(\theta_w)$

 $sin^2 \theta_W$: a central parameter of the standard model

Atomic Parity Violation

- Coherent quarks in entire nucleus
- Nuclear structure uncertainties
- -376 C_{1u} 422 C_{1d}

Neutrino Scattering

- Quark scattering (from nucleus)
- Weak charged and neutral current difference

7 Courtesy of P. Reimer and R. Arnold

SFB 1044 Institut für Kernphysik

", running" $\sin^2 \theta_{eff}$ or $\sin^2 \theta_{W}(\mu)$

SFB 1044 Institut für Kernphysik

Sensitivity to new physics beyond the Standard Model

JGU

Institut für Kernphysik

Sensitivity to new physics beyond the Standard Model

Extra Z

Mixing with Dark photon or Dark Z

Contact interaction

New Fermions

SFB 1044 Institut für Kernphysik

Dark Photon, Z-Boson

Running $\sin^2 \theta_w$ and Dark Parity Violation

SFB 1044 Institut für Kernphysik

Physics sensitivity from contact interaction (LEP2 convention, g²= 4pi)

	precision	$\Delta \sin^2 \overline{\Theta}_{W}(0)$	Λ_{new} (expected)
APV Cs	0.58 %	0.0019	32.3 TeV
E158	14 %	0.0013	17.0 TeV
Qweak I	19 %	0.0030	17.0 TeV
Qweak final	4.5 %	0.0008	33 TeV
PVDIS	4.5 %	0.0050	7.6 TeV
SoLID	0.6 %	0.00057	22 TeV
MOLLER	2.3 %	0.00026	39 TeV
P2	2.0 %	0.00036	49 TeV
PVES ¹² C	0.3 %	0.0007	49 TeV

SFB 1044 Institut für Kernphysik

Experimental Method: Parity Violating Electron Scattering

Parity Violating Asymmetry in elastic electron electron/proton scattering

FB'

044

P2@MESA: Parity violating cross section asymmetry

$$A_{LR} = \frac{\sigma(e\uparrow) - \sigma(e\downarrow)}{\sigma(e\uparrow) + \sigma(e\downarrow)} = -\frac{G_F Q^2}{4\sqrt{2}\pi\alpha} (Q_W - F(Q^2))$$

$$Q_W = 1 - 4\sin^2\theta_W(\mu)$$
polarisation measurement hadron structure

$$F(Q^2) = F_{EM}(Q^2) + F_{Axial}(Q^2) + F_{Strange}(Q^2)$$

• Contributions to $\Delta sin^2 \Theta_W$ for 35° central scattering angle, E=150 MeV, 10000 h of data taking

JG U P2-Precision in sin² θw

	Total	Statistics	Polarization	Apparative	FF	Re(□ _{yzA})
∆sin²(θ _w)	3.1e-4	2.6e-4	9.7e-5	7.0e-5	1.4e-4	6e-5
	(0.13 %)	(0.11 %)	(0.04 %)	(0.03 %)	(0.04 %)	(0.03 %)
∆A ^{exp} /ppb	0.44	0.38	0.14	0.10	0.11	0.09
	(1.5 %)	(1.34 %)	(0.49 %)	(0.35 %)	(0.38 %)	(0.32 %)

JGU

P2 Parameter

E_{beam}	$155\mathrm{MeV}$
$ar{ heta}_{ m f}$	35°
$\delta heta_{ m f}$	20°
$\langle Q^2 \rangle_{L=600 \mathrm{mm}, \ \delta \theta_{\mathrm{f}}=20^{\circ}}$	$6 imes 10^{-3}({ m GeV/c})^2$
$\langle A^{\exp} \rangle$	$-39.94\mathrm{ppb}$
$(\Delta A^{\exp})_{\mathrm{Total}}$	0.56 ppb (1.40 %)
$(\Delta A^{\exp})_{\mathrm{Statistics}}$	0.51 ppb (1.28%)
$(\Delta A^{\exp})_{ m Polarization}$	0.21 ppb (0.53 %)
$(\Delta A^{\exp})_{Apparative}$	0.10 ppb (0.25 %)
$\langle s_{\rm W}^2 \rangle$	0.23116
$\langle s_W^2 \rangle$ $(\Delta s_W^2)_{Total}$	$\begin{array}{c} 0.23116\\ \\ 3.3\times10^{-4}(0.14\%)\end{array}$
$\langle s_W^2 \rangle$ $(\Delta s_W^2)_{Total}$ $(\Delta s_W^2)_{Statistics}$	$\begin{array}{c} 0.23116\\\\ \hline 3.3\times10^{-4}~(0.14\%)\\\\ \hline 2.7\times10^{-4}~(0.12\%)\end{array}$
$\langle s_{W}^{2} \rangle$ $(\Delta s_{W}^{2})_{Total}$ $(\Delta s_{W}^{2})_{Statistics}$ $(\Delta s_{W}^{2})_{Polarization}$	$\begin{array}{c} 0.23116\\\\\hline 3.3\times10^{-4}~(0.14~\%)\\\\\hline 2.7\times10^{-4}~(0.12~\%)\\\\\hline 1.0\times10^{-4}~(0.04~\%)\end{array}$
$\langle s_{W}^{2} \rangle$ $(\Delta s_{W}^{2})_{Total}$ $(\Delta s_{W}^{2})_{Statistics}$ $(\Delta s_{W}^{2})_{Polarization}$ $(\Delta s_{W}^{2})_{A pparative}$	$\begin{array}{c} 0.23116\\\\\hline 3.3\times10^{-4}~(0.14~\%)\\\\\hline 2.7\times10^{-4}~(0.12~\%)\\\\\hline 1.0\times10^{-4}~(0.04~\%)\\\\\hline 0.5\times10^{-4}~(0.02~\%)\end{array}$
$\langle s_{W}^{2} \rangle$ $(\Delta s_{W}^{2})_{Total}$ $(\Delta s_{W}^{2})_{Statistics}$ $(\Delta s_{W}^{2})_{Polarization}$ $(\Delta s_{W}^{2})_{A pparative}$ $(\Delta s_{W}^{2})_{\Box_{\gamma Z}}$	$\begin{array}{c} 0.23116\\ \hline 3.3\times10^{-4}~(0.14~\%)\\ \hline 2.7\times10^{-4}~(0.12~\%)\\ \hline 1.0\times10^{-4}~(0.04~\%)\\ \hline 0.5\times10^{-4}~(0.02~\%)\\ \hline 0.4\times10^{-4}~(0.02~\%)\end{array}$
$\begin{array}{c} \langle s_{\mathrm{W}}^2 \rangle \\ (\Delta s_{\mathrm{W}}^2)_{\mathrm{Total}} \\ (\Delta s_{\mathrm{W}}^2)_{\mathrm{Statistics}} \\ (\Delta s_{\mathrm{W}}^2)_{\mathrm{Polarization}} \\ (\Delta s_{\mathrm{W}}^2)_{\mathrm{Apparative}} \\ (\Delta s_{\mathrm{W}}^2)_{\mathrm{maxive}} \\ (\Delta s_{\mathrm{W}}^2)_{\Box_{\gamma Z}} \\ (\Delta s_{\mathrm{W}}^2)_{\mathrm{nucl. FF}} \end{array}$	$\begin{array}{c} 0.23116\\ \hline 3.3\times10^{-4}~(0.14~\%)\\ \hline 2.7\times10^{-4}~(0.12~\%)\\ \hline 1.0\times10^{-4}~(0.04~\%)\\ \hline 0.5\times10^{-4}~(0.02~\%)\\ \hline 0.4\times10^{-4}~(0.02~\%)\\ \hline 1.2\times10^{-4}~(0.05~\%)\end{array}$
$\begin{array}{c} \langle s_{\mathrm{W}}^2 \rangle \\ (\Delta s_{\mathrm{W}}^2)_{\mathrm{Total}} \\ \hline (\Delta s_{\mathrm{W}}^2)_{\mathrm{Statistics}} \\ (\Delta s_{\mathrm{W}}^2)_{\mathrm{Polarization}} \\ (\Delta s_{\mathrm{W}}^2)_{\mathrm{A pparative}} \\ \hline (\Delta s_{\mathrm{W}}^2)_{\square_{\gamma Z}} \\ \hline (\Delta s_{\mathrm{W}}^2)_{\square_{\gamma Z}} \\ \hline (\Delta s_{\mathrm{W}}^2)_{\mathrm{nucl. FF}} \\ \hline \langle Q^2 \rangle_{\mathrm{Cherenkov}} \end{array}$	$\begin{array}{c} 0.23116\\ \hline 3.3\times10^{-4}~(0.14~\%)\\ \hline 2.7\times10^{-4}~(0.12~\%)\\ \hline 1.0\times10^{-4}~(0.04~\%)\\ \hline 0.5\times10^{-4}~(0.02~\%)\\ \hline 0.4\times10^{-4}~(0.02~\%)\\ \hline 1.2\times10^{-4}~(0.05~\%)\\ \hline 4.57\times10^{-3}~({\rm GeV/c})^2\\ \end{array}$

Frank Maas, Teilchenphysikkolloquium, Heidleberg, Feb. 5, 2013

PVeS Experiment Summary

P2-Spectrometer: 0.6 T Superconducting Solenoid

JGU P2-Detector response SFB 1044 Institut für Kernphysik

Full GEANT4 simulation

Number of PMT cathode electrons emitted per event

IGU P2: International Collaboration

The P2 Experiment arXiv:1802.04759

A future high-precision measurement of the electroweak mixing angle at low momentum transfer

Dominik Becker^{1,2}, Razvan Bucoveanu^{1,3}, Carsten Grzesik^{1,2}, Ruth Kempf^{1,2}, Kathrin Imai^{1,2}, Matthias Molitor^{1,2}, <u>Alexey Tyukin^{1,2}, Marco Zimmermann^{1,2}</u>, David Armstrong⁴, Kurt Aulenbacher^{1,2,5}, Sebastian Baunack^{1,2}, Rakitha Beminiwattha⁶, Niklaus Berger^{1,2}, Peter Bernhard^{1,7}, Andrea Brogna^{1,7}, Luigi Capozza^{1,2,5}, Silviu Covrig Dusa⁸, Wouter Deconinck⁴, Jürgen Diefenbach^{1,2}, James Dunne¹⁷, Jens Erler⁹, Ciprian Gal¹⁰, Boris Gläser^{1,2}, Boxing Gou^{1,2,5}, Wolfgang Gradl^{1,2}, Michael Gericke¹¹, Mikhail Gorchtein^{1,2}, Yoshio Imai^{1,2}, Krishna S. Kumar¹², Frank Maas^{1,2,5,a}, Juliette Mammei¹¹, Jie Pan¹¹, Preeti Pandey¹¹, Kent Paschke¹⁰, Ivan Perić¹³, Mark Pitt¹⁴, Sakib Rahman¹¹, Seamus Riordan¹⁵, David Rodríguez Piñeiro^{1,2,5}, Concettina Sfienti^{1,2,3,7}, Iurii Sorokin^{1,2}, Paul Souder¹⁶, Hubert Spiesberger^{1,3}, Michaela Thiel^{1,2}, Valery Tyukin^{1,2}, and Quirin Weitzel^{1,7}

- ¹ PRISMA Cluster of Excellence, Johannes Gutenberg-Universität Mainz, Germany
- ² Institute of Nuclear Physics, Johannes Gutenberg-Universität Mainz, Germany
- ³ Institute of Physics, Johannes Gutenberg-Universität, Mainz, Germany
- ⁴ College of William and Mary, Williamsburg, Virginia, USA
- ⁵ Helmholtz Institute Mainz, Johannes Gutenberg-Universität Mainz, Germany
- ⁶ Louisiana Tech University, Ruston, Louisiana, USA
- ⁷ Detector Laboratory, PRISMA Cluster of Excellence, Johannes Gutenberg-Universität Mainz, Germany
- ⁸ Thomas Jefferson National Accelerator Facility, Newport News, Virginia, USA
- ⁹ Departamento de Física Teórica, Instituto de Física, Universidad Nacional Autónoma de México, CDMX, México
- ¹⁰ University of Virginia, Charlottesville, Virginia, USA
- ¹¹ Department of Physics and Astronomy, University of Manitoba, Winnipeg, Canada
- ¹² Department of Physics and Astronomy, Stony Brook University, Stony Brook, USA
- ¹³ Institute for Data Processing and Electronics, Karlsruhe Institute of Technology, Karlsruhe, Germany
- ¹⁴ Virginia Tech University, Blacksburg, Virginia, USA
- ¹⁵ Physics Division, Argonne National Laboratory, Argonne, USA
- ¹⁶ Physics Department, Syracuse University, Syracuse, USA
- ¹⁷ Mississippi State University, Mississippi State, MS, USA

PREX. CREX and MOLLER at JLab

Krishna Kumar, April 30, 2018

PREX, CREX and MOLLER at JLab

MOLLER Apparatus

hybrid spectrometer coil

Technical Challenges

Evolutionary Improvements from Technology of Third **Generation Experiments**

- ~ 150 GHz scattered electron rate
- 1 nm control of beam centroid on target
- > 10 gm/cm² liquid hydrogen target - 1.5 m: ~ 5 kW @ 85 μA
- Full Azimuthal acceptance w/ θ_{lab} ~ 5 mrad
 - novel toroidal spectrometer pair
 - radiation hard, highly segmented integrating detectors
- Robust & Redundant 0.4% beam polarimetry

MOLLER Uncertainty Table

Beam	Assumed	Accuracy of	Required 2 kHz	Required cumulative	Systematic
Property	Sensitivity	Correction	random fluctuations	helicity-correlation	contribution
Intensity	1 ppb / ppb	~1%	< 1000 ppm	< 10 ppb	$\sim 0.1 \text{ ppb}$
Energy	-1.4 ppb / ppb	$\sim \! 10\%$	< 108 ppm	< 0.7 ppb	$\sim 0.05~{ m ppb}$
Position	0.85 ppb / nm	$\sim 10\%$	$< 47 \ \mu { m m}$	$< 1.2 \; \mathrm{nm}$	$\sim 0.05~{ m ppb}$
Angle	8.5 ppb / nrad	$\sim 10\%$	$< 4.7 \ \mu rad$	< 0.12 nrad	$\sim 0.05~{ m ppb}$

Error Source	Fractional Error (%)
Statistical	2.1
Absolute Normalization of the Kinematic Factor	0.5
Beam (second order)	0.4
Beam polarization	0.4
$e + p(+\gamma) \rightarrow e + X(+\gamma)$ All systematics	0.4
Beam (position, angle, energy) required at	0.4
Beam (intensity) sub-1% level	0.3
$e + p(+\gamma) \rightarrow e + p(+\gamma)$	0.3
$\gamma^{(*)} + p \to (\pi, \mu, K) + X$	0.3
Transverse polarization	0.2
Neutral background (soft photons, neutrons)	0.1
Total systematic	1.1

Future wEFT constraints from APV and PVES

Adam Falkowski at Mainz MITP workshop: Impact on low energy measurements Current QWEAK, PVDIS, and APV cesium experiments:

Projections from combined P2, SoLID, and APV radium experiments:

$$\begin{pmatrix} \delta g_{AV}^{eu} \\ \delta g_{AV}^{ed} \\ 2\delta g_{VA}^{eu} - \delta g_{VA}^{ed} \end{pmatrix} = \begin{pmatrix} 0 \pm 0.70 \\ 0 \pm 0.97 \\ 0 \pm 7.4 \end{pmatrix} \times 10^{-3}$$

$$\mathcal{L}_{\text{wEFT}} \supset -\frac{1}{2v^2} \sum_{q=u,d} g_{AV}^{eq} (\bar{e}\,\bar{\sigma}_{\rho}e - e^c\sigma_{\rho}\bar{e}^c) (\bar{q}\,\bar{\sigma}^{\rho}q + q^c\sigma^{\rho}\bar{q}^c) -\frac{1}{2v^2} \sum_{q=u,d} g_{VA}^{eq} (\bar{e}\,\bar{\sigma}_{\rho}e + e^c\sigma_{\rho}\bar{e}^c) (\bar{q}\,\bar{\sigma}^{\rho}q - q^c\sigma^{\rho}\bar{q}^c)$$

AA, Grilli Di Cortona, Tabrizi 1802.08296

AA, Gonzalez-Alonso in progress

JGU

Institut für Kernphysik

- Parity violating electron/electron and electron/proton scattering: "Low energy frontier" comprises a sensitive test of the standard model complementary to LHC
- If LHC sees ANY anomaly in Runs 2 or 3 (~2025), parity violating electron scattering with its unique discovery space will become a pressing need, like other sensitive probes (e.g. g-2 anomaly)
- Determination of $sin^2(\theta_w)$ with high precision (similar to Z-pole) but far off Z-Pole tests BSM up to a mass scale of 50 TeV
- P2-Experiment (proton weak charge) in Mainz under preparation New MESA energy recovering accelerator at 155 MeV, target precision is 2 % in weak proton charge i.e. 0.15% in $sin^2(\theta_w)$,
- Start P2-commissioning in 2022, MOLLER commissioning in 2023
- Much more physics from PV electron scattering
- P2@MESA, Moeller@Jlab and SOLID@Jlab very sensitive test of Standard Model Extension