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(Conjectured) QCD phase diagram

I Study response of the
system to change of
external parameters, i.e.
temperature and baryon
density, asymptotic
freedom suggests a weakly
interacting phase1

I Experimental program:
RHIC, LHC, FAIR, NICA

I RHIC BES: search for the
critical point

I First-principle calculations are possible at µ
B

/T = 0,
expansions/extrapolations at small µ

B

/T

1Collins, Perry (1975), Cabbibo, Parisi (1975)
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Lattice gauge theory
I Start with the path integral quantization, Euclidean signature:

hOi =
1

Z
Z

D[ ]D[ ̄]D[A] O exp(�S
E

(T ,V , ~µ)),

Z(T ,V , ~µ) =

Z
D[ ]D[ ̄]D[A] exp(�S

E

(T ,V , ~µ)),

S
E

(T ,V , ~µ) = �
1/TZ

0

dx
0

Z

V

d3xLE (~µ),

LE (~µ) = LE

QCD

+
X

f =u,d ,s

µ
f

 ̄
f

�
0

 
f

I Introduce a (non-perturbative!) regulator – minimum space-time
“resolution” scale a, i.e. lattice, Wilson (1974)

I The lattice spacing a acts as a UV cuto↵, p
max

⇠ ⇡/a
I The integrals can be evaluated with importance sampling

methods
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Challenges
I Broken symmetries – e.g., Lorentz, chiral

I Fermion doubling
I Grassmann fields (fermions) cannot be sampled, integrate them

out:

Z =

Z
D[U]D[ ]D[ ̄]e�S

G

[U]�S
F

[

¯ , ,U]

=

Z
D[U]e�S

G

[U] det |M[U]|

I The e↵ective action is highly non-local, Monte Carlo sampling is
costly

I The computational cost is determined by the condition number
of the fermion matrix, which scales with the inverse lightest
quark mass

I Sign problem at µ
B

> 0
I Real-time properties are hard to access
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How to access µB > 0?

I Method 1: Taylor expansion (Allton et al. (2002)), evaluate
various derivatives at µ = 0, e.g.

�u

2

=
T

V

D
Tr

�
M�1

u

M 00
u

� (M�1

u

M 0
u

)2
�
+
�
Tr(M�1

u

M 0
u

)
�
2

E

I Method 2: Perform simulations at imaginary chemical potential,
then evaluate the derivatives of P(iµ) (Lombardo (1999), de
Forcrand, Philipsen (2002))

I Methods 3, 4, ...: Complex Langevin dynamics, contour
deformation, reweighting/density of states, ...

A. Bazavov (MSU) CIPANP2018 June 2, 2018 6 / 27



How to access µB > 0?

I Method 1: Taylor expansion (Allton et al. (2002)), evaluate
various derivatives at µ = 0, e.g.

�u

2

=
T

V

D
Tr

�
M�1

u

M 00
u

� (M�1

u

M 0
u

)2
�
+
�
Tr(M�1

u

M 0
u

)
�
2

E

I Method 2: Perform simulations at imaginary chemical potential,
then evaluate the derivatives of P(iµ) (Lombardo (1999), de
Forcrand, Philipsen (2002))

I Methods 3, 4, ...: Complex Langevin dynamics, contour
deformation, reweighting/density of states, ...

A. Bazavov (MSU) CIPANP2018 June 2, 2018 6 / 27



How to access µB > 0?

I Method 1: Taylor expansion (Allton et al. (2002)), evaluate
various derivatives at µ = 0, e.g.

�u

2

=
T

V

D
Tr

�
M�1

u

M 00
u

� (M�1

u

M 0
u

)2
�
+
�
Tr(M�1

u

M 0
u

)
�
2

E

I Method 2: Perform simulations at imaginary chemical potential,
then evaluate the derivatives of P(iµ) (Lombardo (1999), de
Forcrand, Philipsen (2002))

I Methods 3, 4, ...: Complex Langevin dynamics, contour
deformation, reweighting/density of states, ...

A. Bazavov (MSU) CIPANP2018 June 2, 2018 6 / 27



How to access µB > 0?

I Method 1: Taylor expansion (Allton et al. (2002)), evaluate
various derivatives at µ = 0, e.g.

�u

2

=
T

V

D
Tr

�
M�1

u

M 00
u

� (M�1

u

M 0
u

)2
�
+
�
Tr(M�1

u

M 0
u

)
�
2

E

I Method 2: Perform simulations at imaginary chemical potential,
then evaluate the derivatives of P(iµ) (Lombardo (1999), de
Forcrand, Philipsen (2002))

I Methods 3, 4, ...: Complex Langevin dynamics, contour
deformation, reweighting/density of states, ...

A. Bazavov (MSU) CIPANP2018 June 2, 2018 6 / 27



Method 1: Taylor expansion
I The chemical potentials for conserved charges B , Q, S :

µ
u

=
1

3
µ
B

+
2

3
µ
Q

,

µ
d

=
1

3
µ
B

� 1

3
µ
Q

,

µ
s

=
1

3
µ
B

� 1

3
µ
Q

� µ
S

I The pressure can be expanded in Taylor series

P

T 4

=
1

VT 3

lnZ(T ,V , µ̂
u

, µ̂
d

, µ̂
s

) =
1X

i ,j ,k=0

�BQS

ijk

i !j! k!
µ̂i

B

µ̂j

Q

µ̂k

S

I The generalized susceptibilities are evaluated at vanishing
chemical potential

�BQS

ijk

⌘ �BQS

ijk

(T ) =
@P(T , µ̂)/T 4

@µ̂i

B

@µ̂j

Q

@µ̂k

S

�����
µ̂=0

, µ̂ ⌘ µ

T
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Fluctuations of conserved charges
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I Strangeness (left) and baryon number (right) fluctuations
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Constrained series expansions

I The number densities can also be represented with Taylor
expansions:

n
X

T 3

=
@P/T 4

@µ̂
X

, X = B ,Q, S

I In heavy-ion collisions there are additional constraints:

n
S

= 0,
n
Q

n
B

= 0.4

I These constraints can be fulfilled by

µ̂
Q

(T , µ
B

) = q
1

(T )µ̂
B

+ q
3

(T )µ̂3

B

+ q
5

(T )µ̂5

B

+ . . . ,

µ̂
S

(T , µ
B

) = s
1

(T )µ̂
B

+ s
3

(T )µ̂3

B

+ s
5

(T )µ̂5

B

+ . . .
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Method 2: Imaginary chemical potential2Analytic continuation

continuation
d(p/T^4)/dµ

Tc(µ)

T

µ2/T2

Ro
be

rg
e-

W
ei

ss

real chemical potentialslattice simulations

1.221.622.022.42

ĸ

Many exploratory studies: [de Forcrand & Philipsen hep-lat/0205016]

[Philipsen 0708.1293] [Philipsen 1402.0838] [Cea et al hep-lat/0612018,0905.1292,1202.5700]

2Figure from the talk at Quark Matter 2018 by S. Borsanyi
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Baryon number susceptibilities3

3Borsanyi et al. [WB], 1805.04445
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Results at µB = 0

A. Bazavov (MSU) CIPANP2018 June 2, 2018 12 / 27



Chiral symmetry restoration
I Chiral condensate and susceptibility

h ̄ i
f

=
T

V

@ lnZ
@m

f

, �(T ) =
@h ̄ i

f

@m
f

The chiral crossover temperature at µ
B

= 0 (Borsanyi et al. [BW]
(2010), Bazavov et al. [HotQCD] (2012))

T
c

= 154 ± 9 MeV
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Chiral symmetry restoration (update)4
The T0 continuum extrapolation
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Chiral symmetry restoration (update)5

I Comparison with earlier results
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Results at µB > 0
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Curvature of the chiral crossover line6

I Change in the chiral crossover temperature with µ
B
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Chiral crossover at µB > 07Susceptibility fluctuations � along Tc(µB)
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�2
B and �disc show no indication that crossover gets stronger

I The magnitude of the chiral susceptibility shows almost no
change with increasing µ

B

> 0

I No indication that the crossover is getting stronger

I Similar conclusion from the baryon number fluctuations along
the crossover line
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The equation of state at O(µ6
B)

I The equation of state at µ
B

= 08
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The equation of state at O(µ6
B)9
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The equation of state at O(µ6
B)
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Relativistic heavy-ion collisions
I Cumulants of the event-by-event multiplicity distributions:
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Freeze-out parameters
I Consider the ratios of cumulants:
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I These ratios can be evaluated on the lattice for constrained
system and serve as thermometer (left) and baryometer (right)10

10Bazavov et al. [BNL-Bielefeld] (2012)
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Skewness and kurtosis
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Skewness and kurtosis

I Recent result by Borsanyi et al. [WB] 1805.04445
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Constraints on the critical point
I For µ
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= µ
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= 0 the net baryon-number susceptibility is
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Conclusion
I Lattice QCD calculations are now in the regime of the physical

light quark masses and continuum limit is possible for many
observables

I The most studied region of the QCD phase diagram is at µ
B

= 0
I At non-zero baryon chemical potential direct Monte Carlo

simulations are not (yet) possible due to the sign problem
I The region of small µ/T can be explored with expansions in

µ/T or by analytic continuation from imaginary µ
I Generalized susceptibilities are now calculated up to 8th order in

µ
B

I The equation of state is now known up to the 6th order in µ
B

I Ratios of the generalized susceptibilities can be related to
experimentally measured cumulants of event-by-event multiplicity
distributions

I Recent lattice calculations strongly disfavor QCD critical point in
the region of µ

B

< 2T in the temperature range
135 < T < 155 MeV
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