## Multi-messenger constraints on UHECR sources

Marco Muzio, G. R. Farrar, M. Unger, L. Anchordoqui



#### Pure-proton UHECR models strongly constrained by Fermi-LAT

#### Only narrow range of parameter space remains viable\*

\*and fit to UHECR spectrum and composition is poor



V. Berezinsky et al. Astropart. Phys., 84, 5261 (2016), arXiv:1606.09293.

#### Pure-proton UHECR models strongly constrained by Fermi-LAT



V. Berezinsky et al. Astropart. Phys., 84, 5261 (2016), arXiv:1606.09293.

### The UFA Source Model

M. Unger, G.R. Farrar & L.A. Anchordoqui, Phys. Rev. D **92** (2015) 123001, arXiv:1505.02153



- Allows for injected nuclei to undergo photonuclear disintegration in the source environment
- Explains the origin of ankle and light composition at EeV energies
- Beautifully fits Auger spectrum and composition using escaping mixed-composition

#### Constraining UFA Source Evolution and Properties with Fermi-LAT and IceCube

#### Constraints on Source Evolution



### Constraints on Source Evolution



#### Constraints on Source Temperature



#### Constraints on Source Temperature



#### Constraints on Source Temperature



# Several UFA variants give good fits to Auger spectrum + composition



## Can $\gamma$ & $\nu$ 's constrain UFAs?



### Constraints on Benchmark UFAs



# Summary

- Pure-proton models survive only in a narrow parameter space (and their UHECR fits are poor)
- Mixed-composition (UFA) models not yet constrained by secondary messenger limits
- Neutrino fluxes strongly constrain possible source temperatures
- UFA models:
  - Auger spectrum
  - Auger composition
- LAT compatible
- IceCube compatible