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Intro, pQCD and scale dependence

From one theory to multiple theories,

Role of scale in jets and jet observables,

Analytic calculations and Monte Carlo simulations
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QCD is all about scale!

Sept. 2013
T decays (N3LO)
Lattice QCD (NNLO)
DIS jets (NLO) |
Heavy Quarkonia (NLO) i
e'e  jets & shapes (res. NNLO)
Z pole fit (N3LO)
pp —> jets (NLO)
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From the talk I gave at CIPANTP 2009
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Jet weakly coupled Jet weakly coupled Jet weakly coupled
to weakly coupled  to arbitrary medium to strongly coupled

medium medium
A.MY Higher Twist L.R.W, C-S.T
W.H.D.G. A.S.W.

Factorized approaches

h A
do N/d;gadabe(gja)G(wb)dO;

dt

dydpr

Jet strongly coupled
to strongly coupled
medium

Trailing String

N-hadron data



Life was good!

if you only work on a few observables
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A complete change of paradigm!

How jets interact with the medium and evolve depends on
* Temperature of the medium
* Energy of the jet

* scale of the parton in the jet (E,u2?)
* other scale of the medium (q 1)

Different approaches to E-loss are valid in different epochs of the jet
A complete description requires all of these approaches

Discussion moves to boundaries between approaches
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Theory: Higher Twist
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Low virtuality, high energy part

Scattering dominated regime

Few, time separated W
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Low virtuality low energy part

* Many of these partons are absorbed by the medium

* Cannot be described by pQCD
 Modeled! (LBNL-CCNU, YaJEM, JEWEL)

* Scale of parton same as scale of medium

 AdS/CFT

P. Chesler, W. Horowitz J. Casalderrey-Solana,
G. Milhano, D. Pablos, K. Rajagopal
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Grand picture (leading hadrons)

In a static brick
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Grand picture (leading hadrons)

Strong coupling, - = ==
AdS-CFT _'-------
- -

Strong coupling,
AdS-CFT

In an expanding QGP



Energy deposition-thermalization

Strong coupling, Energy thermalization
AdS-CFT

Soft wide angle ragis | AMY

Strong coupling,
AdS-CF] Energy thermalization
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Strong coupling, Energy thermalization
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Everything changes with scale in jet quenching

Strong coupling, Energy thermaliz
AdS-CFT

-

Ny
Soft wide angl€ ™
radiation

Strong coupling,
AdS-CFT Energy thermali

15



Transport coefficients
for partons in a dense medium

p; ~ E* —p pt ~p3 /2p

Transverse momentum

diffusion rate

Elastic energy loss
rate
also diffusion rate e

By definition, describe how the medium modifies the jet parton!
16



In general, 2 kinds of transport coefficients

Type 1: which quantify how the medium changes the jet
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Need a Monte-Carlo event generator based approach

Need to have a framework

Everything changes with scale in jet quenching

Strong coupling, Energy thermalization

AdS-CFT / Vau-
- ” S BDMPS-AMY

* That can modularly incorporate a variety of

S
~~ ek -7. -
Soft wide angle = \\

radiation RS

theoretical approaches
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In general, 2 kinds of transport coefficients

Type |:which quantify how the medium changes the jet

@(EQZ) W(E, QY = ¥1) —L<P%>2

Which can allow you to model medium response, o v v

Type 2: which quantify the space-time structure of the
deposited energy momentum at the hydro scale

and entire range of transport coefficients ==l 1A

Observables
1. Observables that only depend on type 1

1. Strong dependence on hard o :
1. Hadron Raa, high pr v2!
2. Dihadron, Iaa, y-Hadron

(clear dependence on g, but also require fragmentation functions)

2. Weaker dependence on hard o :

. 11 1 * 1 1 1. Near side Ina ! (badly surface biased)
2. Observables that depend on type 1 and some type 2
dn a ress all opservaples Simuiltaneous i
1. JetRaa, high prva!
2. Difets (X;), y-Jet
(reduce dependence on type 2 by increasing E, lose sensitioity, reduce R, requires resummation)
2. Weaker dependence on hard o :
1z
2. Jet Mass, Jet shape
3. Observables that depend strongly on type 2

Jet medium correlations



Need a Monte-Carlo event generator based approach

Need to have a framework

* That can modularly incorporate a variety of

theoretical approaches

In general, 2 kinds of transport coefficients

Type |:which quantify how the medium changes the jet

4(E, Qz) (B, Q) = (v1) —L<P3~>2

* Which can allow you to model medium response, o we s

and entire range of transport coefficients ==l 1A

Observables

* Can address all observables simultaneously

Such a framework now exists: JETSCAPE mm\glw
https://github.com/[ETSCAPE DEYSECRPE




Applying Multi-scale models

Its the right thing to do.
Pushing limited approaches past limits creates tension!

. > LBT anti-k, R = 0.4 jets —LBT 5.02 TeV+ATLAS 5.02 TeV

fixed as=0.15 : —LBT 2.76 TeV+ATLAS 2.76 TeV

O CMS 0-5%
O ALICE 0-5%

mean as=0.2

100 200 300 400 500 600 700 800 900 1000

25 50 75 100
py (GeV)

S. Cao, MATTER

100 < P < 300 GeV K=100 s
Pjgzawrton > 1 GGV %i%g
0.3<n<2,r<0.3 CMS ]I)(;g
0-10% Centrality ' -

ATLAS hadron
CMS jet R=0.3

MATTER pion

D. Pablos, Hybrid

Pb-Pb @ 2.76 TeV 0-5%




Evidence of multiple scales from M
multiple-stage Monte Carlos
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Switching between one event-generator and the next
in a brick @ ETSCAPE Phys.Rev. C96 (2017) no.2, 024909
Repeat with hadronization and fluid medium being calculated
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How would this work: TETSLAPE

Modify, input parameters e.g., a, e.

Initial hard
N-parton
distribution
———

Detector
simulation

Nuclear Parton
Distribution

Statistical
fit test

hadronization

Phenomenological input:

Hard & semi-hard

Transport coefficients
Energy deposition /
Viscous Fluid dynamics of QGP

Initial soft
Corrected

density distribution
Statistical emulation

Nuclear Monte-
Carlo

Success!

IETSCAPE
Jihw | Gl e
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How would this work: TETSLAPE

Modify, input parameters e.g., G, e.

Initial hard

Detector
simulation

Distribution
Function

Nuclear Parton

Phenomenological input:
Transport coefficients
Energy deposition

Hard & semi-hard
hadronization

Viscous Fluid dynamics of QGP

Initial soft
density distribution
Statistical emulation

Nuclear Monte-
Carlo

IETSCAPF F
JCIOUAFL L




How would this work? M

JEVILAPE

Modify, input parameters e.g., (’1\, e.

S
s P
‘g 2 £ Initial hard
a 3 5 N-parton <
3 é E distribution .‘cf _S
53 _— E 8
- w [T
w <
Lattice QCD 3 2
Input \ Phenomenological input: T ®
~ Transport coefficients T =
'\ \‘ Energy deposition
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Using the tull event generator A\l

JEVILAPE

* Any good event generator needs a good p-p baseline

| ' | anti-kT with R=0.2, nil<2.0 |

PYTHIA fOr lnltlal state i +JETSCAPE(PP)/CMS(pP) at 2.76TeV
MATTER for all final state partons > 1GeV _
PYTHIA based hadronizati()n Of flnal pal‘tons :}_}} B WP N T N S W S—

\/g = 2.76 ATGV, Jets anti-k; R=0.4 . JETSCAPE Preliminary

ATLAS Data —e— -
‘Colorless Had + =
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] ] | 1 ] ]
| 126 < pr < 158 GeV 100 150 200 250

JETSCAPE Preliminary pT of Jet (GeV)
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I T T I T I
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Preliminary results from JETSCAPE M
JETSCAPE

Initial state with TRENTO for both hydro and jets
TRENTO —> PreEquib—> MUSIC —> Soft Hadronization
TRENTO —>PYTHIA init

—> (MATTER/LBT/MARTINI/AAS) + MUSIC profile

—> PYTHIA based hadronization

(1/2)_ . _

—+— CMS 2.76 TeV (0-5%) e CMS (0-5%)
m JETSCAPE

JETSCAPE Preliminary

2274 ALS '

100 150 200 250
Jet P, (GeV)
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—— McGill-AMY
-- GLV-CUIJET

:
ollaboration

q/T3 ~ 4 at 0.2TeV, ~ 3 at 2.76TeV
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T (GeV)
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Limits on € from jets and leading hadrons

Medium recoil needed to get jet physics

Deposited energy seems to thermalize very rapidly into fluid
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What do you want to learn

Jet medium interactions, allow for a needle like probe of the
hydro medium
Allow us to shatter quasi-particles and see them reconstitute,

and equilibrate

LBT model Recoil
T. Luo, S. Cao, Y. He, X.-N. Wang, arXiv:1803.06785

® Exp. (CMS)

— with Hydro Res. PbPb, 2.76 TeV, 0-30% p%ssoc

—=—-without Hydro Res. v-iet event.pr > 80 GeV B 0.5-1 GeV ® Recoils
Hydro Res. [ 11-2GeV
vthia (pp) B 3-4 GeV
I 4-8 GeV
B -8 GeV

- Subleadina iet

PbPb. 2.76 TeV. Diiet
perd > 120 GeV, p* > 50 GeV

‘ ‘@31621(:1 — (Ebdl,l]ﬁ)| > 57/0
0.2 04 0.6




Outlook

Jets provide multi-scale probes of the evolving QGP

Multi-scale dynamics, growing number of T.Cs, and observables
require a modular, modifiable, event generator —> JETSCAPE

Established values of g, e,
(Heavy-quarks provide a slightly shifted view of this)
Need for medium response for jets studies.

Jet medium correlations provide a possible window into degrees of
freedom of the QGP, next stage of JETSCAPE.
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In all calculations presented

bulk medium described by viscous fluid dynamics

Medium evolves hydro-dynamically as the jet moves through it
Fit the q for th€'initial T in the hydro in central coll.

I ' I ' I ' I ' I
[ ——2+1D-visc. Hydro,§ = 2.2 GeV’/fm, T _ fixed
= PHENIX (20-30%)

- — - 24+1D-visc. Hydro,ﬁ\ = 2.2 GeV* /tm, T calculated
e PHENIX (0-5%) .




From RHIC to LHC circa 2012

_|||||||||||||||||||_ : ﬁ_____———E
: ]:l;xﬁ’ —Cmaxflxed

— — T, calculated, q unadjusted
@ CMS 10-30%

" Cpax calculated,a adjusted
® CMS 0-5%

Reasonable agreement with data,
no separate normalization at LHC

W/O any non-trivial x-dependence (E dependence)
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McGill-AMY K. Burke et al.
=== GLV-CUJET

E Au+Au at RHIC I
E Pb+Pb at LHC |
0.2 0.3 0.4
T (GeV)

Do separate fits to the RHIC and LHC data for maximal q

without assuming any kink in the q vs T3 curve
32



wo-a« MARTI e McGill-AMY K. Burke et al.
—— HT-BW -== GLV-CUIJET
wess HT-M

Au+Au at RHIC

Ph+Ph at I.HC‘

Do separate fits to the RHIC and LHC data for maximal q

without assuming any kink in the q vs T3 curve
32






Q is the hard scale of the jet ~ E
QA 1s a semi-hard scale ~ (ET)172, A— 0

q contains all dynamics below QA
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q contains all dynamics below QA




Input PDF at Q?=1 GeV>

X X X

Sea like Wide Valence Narrow Valence

34



Putting it all together

105 1 I 1 1 1 1 1 1 l 1 l‘ 1 1 1 1 I 1 1 1 I 1 1 1 0'4 I I I I T T I I 1 1 1 1 1 1 1 l. 1 I 1 1 1
| —— PHENIX (30-40%) —+ 1 CMS (30-509%) —+— PHENIX (30-40%) ~+ CMS (30-40%)
— HT + VISHNU McKLN = HT + VISHNU M*KLN . e HT + VISHNU McKLN Mo HT + VISHNU McKLN -
L . + _ | g !,__j_ : [ | _"'m.._._._. -

0.5 M a LN ] o — —— ' —

0 i 0.2 —~+—+—+——+—+—+—+
N -+ PHENIX (20-30%) - —— CMS (20-30%) -
- 1 — 02— [ —f— —_—
Cj + _ >N m m __.___H'_ = o, -

0.5 " i 0 i + — —

0 1 B S S S S S A
- ~_ PHENIX (10-20%) —F —— CMS (10-20%) -
1 - 02— ; + —+ —
= LELE . & — "
Ty r——

0.5 t b o— # —— e - —
0 HA 0 e
1 =—— PHENIX (0-10%) ] 0.2/ —— PHENIX (0-10%) + + 1T —— cMs (0-10%) i

0.5 __ i £ +_ 0 -_. e B _--_:_’..l-I——l—l — — | _-

. — — — - —
0 I. .l. .l 1 I 1 1 T_l I 1 1 1 1 1 I 1 1 1 _0 2 1 1 1 I 1 1 1 1 I 1 1 1 1 1 1 I L L 1 I L 1 1
6 10 15 8 20 40 60 80 100 “6 10 15 8 20 40 60
P, (GeV/e) P, (GeV/e) P, (GeV/e) P, (GeV/c)




Input PDF

G(z) = Cx*(1 —x)°

making b negative increases
strength at x ~ 1

Seems ruled out by fits..

Mass of d.o.f. less than mass
of nucleon.
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Going from semi-analytic (event-
averaged) to MC event generators

Some parts are done
with much greater
accuracy

at low pr sensitive to
in-medium frag.

Need a prescription at
lower pr1. Used hard cut
for partons at Q=1GeV
more than a fm inside

x 20-30% 1 v 40-50%

Pb-Pb @ 2.76 TeV
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More sensitive to multiple
scales for full jet

* jets done partonically

MATTER jet R=0.3

ATLAS had
* hard cut for Q<1GeV 0 CMS jetR=03
MATTER pion

more than 1fm in

 Should do the | o ﬁi!ﬁ' b
0Q<1GeV {4
Iore Carefully h Pb-Pb @ 2.76 TeV 0-5%

50 100 150 200 250 300

» Enter JETSCAPE! Pr (GV)




Near side and away side correlations

A. Majumder, et. al., nucl-th/0412061

" O STARh'h P e = 0-8GeV '

| O STAR hhp, =4-6GeV
A STARhhp, =3-4GeVX3

Ll

—_—

E_ = allhh (8GeV< P, <15GeV)
[ (. '

o . » * -

[ e 1 #0.6%[ 14(2,/2,-0.5)]

Ll llllllI

® STAR d-Au min—bias\E g
» == KKPh'"

B STAR Au-Au 0-5%
— = HT Ievolution xlfvith le.n=1|E/L

D)
o)
2f)
=
3
-h
g
)
=
g
L
—
3
U
Q
75
v
<

Ll lllllll

-2
0.2 0.4 0.6 0.8
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0 - 10

A wide range of single particle observables can be explained
by a weak coupling formalism
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How the jet sees the medium depends on jet scale
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