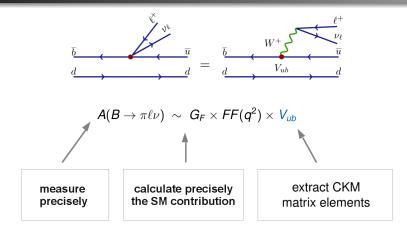
Highlights from the Sessions on Heavy Flavors and the CKM Matrix

Wolfgang Altmannshofer, Chris Bouchard, Paula Collins, Christoph Schwanda

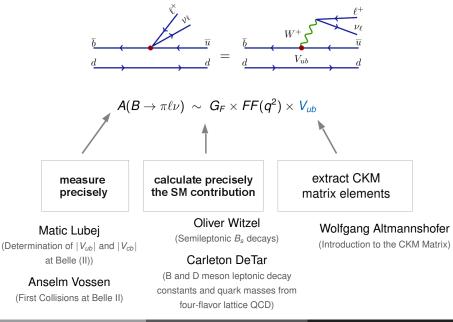
CIPANP 2018 Palm Springs, CA May 29 - June 3, 2018

Heavy Flavor and the CKM Matrix

Lepton Universality Violation	Dr. Gerco ONDERWATER 🖿
Hyatt Regency Indian Wells Conference Center	08:00 - 08:35
Experimental Status of \$V_{ub}/V_{cb}\$ and the CKM Angle \$\gamma\$	Prof. Abner SOFFER
Hyatt Regency Indian Wells Conference Center	08:35 - 09:10

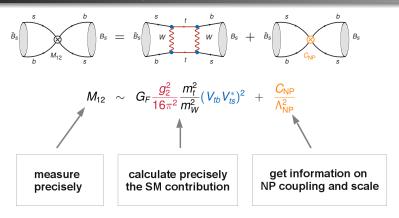

Rare Decays Probing Physics Beyond the Standard Model	Dr. Gerco ONDERWATER	B
Hyatt Regency Indian Wells Conference Center	14:00 - 14:	:30
\$B\to \pi\ell\ell\$ and \$B\to K\ell\ell\$ Decay Form Factors from Lattic	e QCD Dr. Yuzhi LIU	e
Hyatt Regency Indian Wells Conference Center	14:30 - 15:	:00
Search for LNV by the NA48 Experiment	Dr. Cristina BIII/O	E
Hyatt Regency Indian Wells Conference Center	15:00 - 15:	20
Search for \$K^+\to \pi^+ \nu\nu\$ at CERN	Dr. Bob VELGHE	E
Hyatt Regency Indian Wells Conference Center	15:20 - 15:	40
The MEG Experiment: Run I Final Results and Preparation for Run II	Dr. Terence LIBEIRO	b
Hyatt Regency Indian Wells Conference Center	16:10 - 16:	40
The Mu2e Experiment	Dr. Tomonari MIYASHITA	e
Hyatt Regency Indian Well's Conference Center	16:40 - 17:	10
PEN Experiment: a Precise Test of Lepton Universality	Prof. Dinko POCANIC	B
Hyatt Regency Indian Wells Conference Center	17:10 - 17:	30
Improved Search for Heavy Neutrinos and a Test of Lepton Universalit Decay \$\pi \to e \nu\$	in the Richard MISCHKE	8
RD and RD*: Theoretical Developments	Ryotaro WATANABE	n
Hyatt Regency Indian Wells Conference Center	17:50 - 18:	10
Diagnosing New Physics with Lepton Universality Violation and Lepton Flavor Violation	Prof. Alakabha DATTA	2

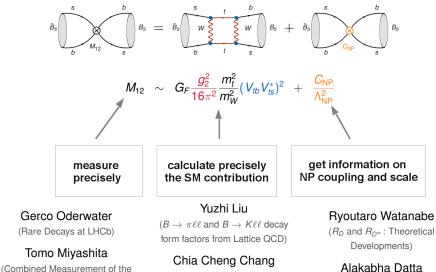
Introduction to the CKM Matrix	Wolfgang ALTMAINISHOFER	D
Hyatt Regency Indian Wells Conference Center	14:00 - 14:	30
Combined Measurement of the CP Violating Angle \$\beta\$ by the BaBa and Belle Experiments	r Dr. Tomonari MIYASHITA	B
Hyatt Regency Indian Wells Conference Center	14:30 - 15:	00
Determination of \$V_{ub}\$ and \$V_{cb}\$	Mr. Matic LUBEJ	b
Hyatt Regency Indian Wells Conference Center	15:00 - 15:	20
First Collisions at Belle II	Anselm VOSSEN	Đ
Hyatt Regency Indian Wells Conference Center	15:20 - 15:	40


Short-Distance Matrix Elements for \$D^0\$-Meson Mixing from \$N_f=2+1\$ Lattice QCD	Dr. Chia Cheng CHANG
Hyatt Regency Indian Wells Conference Center	14:00 - 14:30
\$8\$ and \$D\$ Meson Leptonic Decay Constants and Quark Masses from Four-Flavor Lattice QCD	Cerleton DETAR 🗎
Hyatt Regency Indian Wells Conference Center	14:30 - 15:00
Semileptonic \$B_s\$ Decays	Oliver WITZEL
Hyatt Regency Indian Wells Conference Center	15:00 - 15:20
Unify the SU(3) Topological Diagram and Irreducible Representation Amplitudes for B Decays	Prof. XIAO-GANG HE

2 plenary talks + 4 parallel sessions (2 joint with PPHI) Thank you for all the fantastic contributions!

1) Determine CKM Matrix Elements


1) Determine CKM Matrix Elements


Wolfgang Altmannshofer ()

HFCKM Highlights

2) Search for New Physics

2) Search for New Physics

(Short distance hadronic contributions to D meson mixing from Lattice QCD)

Alakabha Datta

(Diagnosing New Physics with LUV and LFV B Decays)

CP Violating Angle β by the BaBar

and Belle Experiments)

High Precision Lattice Results

Many Sophisticated Techniques

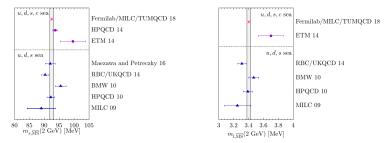
How we achieve high precision

- Gluon gauge-field configurations generated with the highly-improved staggered quark (HISQ) formulation for sea quarks.
- HISQ formulation for all valence quarks, including *b*, following HPQCD [Phys. Rev. **D85**, 031503 (2012).]
- Exploit merger of effective theories to carry out extrapolations to the physical point:
 - Heavy-quark effective theory (HQET) to treat heavy-quark discretization effects.
 - $\bullet\,$ Chiral perturbation theory (HMrPQAS $\chi {\rm PT}$) to treat the light-quark mass dependence.
 - Symanzik effective theory (SET) to treat light-quark and gluon discretization.
- New minimal renormalon subtraction (MRS) scheme improves HQET for quark mass calculation. [Phys. Rev. D97, 034503 (2018)], [Komijani, JHEP 08, 062 (2017)].
- High statistics: 24 gauge-field ensembles with approximate lattice spacing ranging from 0.03 to 0.15 fm, several values of the light quark masses, including physical values.

(Carleton DeTar in HFCKM 7)

Decay Constants with Sub-Percent Precision!

$$\begin{array}{lll} f_{D^0} &=& 211.5 \pm 0.3_{\rm stat} \pm 0.3_{\rm sys} \pm 0.2_{f_{\pi,\rm PDG}} \; {\rm MeV} \\ f_{D^+} &=& 212.6 \pm 0.3_{\rm stat} \pm 0.3_{\rm sys} \pm 0.2_{f_{\pi,\rm PDG}} \; {\rm MeV} \\ f_{D_s} &=& 249.8 \pm 0.3_{\rm stat} \pm 0.3_{\rm sys} \pm 0.2_{f_{\pi,\rm PDG}} \; {\rm MeV} \\ f_{B^+} &=& 189.4 \pm 0.8_{\rm stat} \pm 1.1_{\rm sys} \pm 0.3_{f_{\pi,\rm PDG}} \; {\rm MeV} \\ f_{B^0} &=& 190.5 \pm 0.8_{\rm stat} \pm 1.0_{\rm sys} \pm 0.3_{f_{\pi,\rm PDG}} \; {\rm MeV} \\ f_{B_s} &=& 230.7 \pm 0.8_{\rm stat} \pm 0.8_{\rm sys} \pm 0.2_{f_{\pi,\rm PDG}} \; {\rm MeV} \end{array}$$


The systematic error includes

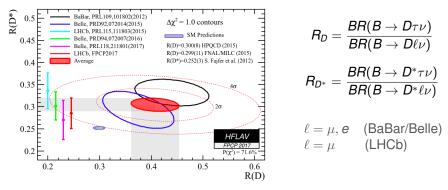
- Continuum extrapolation
- Finite volume
- EM contribution to meson masses that are used to fix the quark masses (Decay constants are pure-QCD quantities; EM contributions to the relation between decay constants and physical decay rates are not included here by definition but would be relevant for phenomenology)
- Uncertainty in adjustment for non-equilibration of topological charge

(Carleton DeTar in HFCKM 7)

Wolfgang			

Up and Down Masses with Percent Precision!

Results for light quark masses in a theory with 4 active flavors.

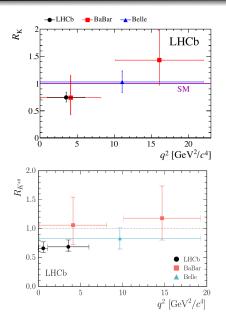

$$\begin{array}{lll} m_{u,\overline{\rm MS}}(2~{\rm GeV}) &=& 2.118(17)_{\sf stat}(32)_{\sf syst}(12)_{\alpha_s}(03)_{f_{\pi,\rm PDG}}~{\rm MeV}, \\ m_{d,\overline{\rm MS}}(2~{\rm GeV}) &=& 4.690(30)_{\sf stat}(36)_{\sf syst}(26)_{\alpha_s}(06)_{f_{\pi,\rm PDG}}~{\rm MeV}, \end{array}$$

(Carleton DeTar in HFCKM 7)

Flavor Anomalies and New Physics

Lepton Flavor Universality Violation 1: R_D and R_{D^*}

world average from the heavy flavor averaging group



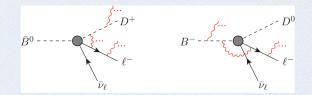
 $R_D^{exp} = 0.407 \pm 0.039 \pm 0.024$, $R_{D^*}^{exp} = 0.304 \pm 0.013 \pm 0.007$

Combined discrepancy $\sim 4\sigma$.

Wolfgang Altmannshofer ()

Lepton Flavor Universality Violation 2: R_{κ} and R_{κ^*}

$$R_{K^{(*)}} = rac{BR(B
ightarrow K^{(*)} \mu \mu)}{BR(B
ightarrow K^{(*)} ee)}$$


$$egin{aligned} R_{K}^{[1,6]} &= 0.745^{+0.090}_{-0.074} \pm 0.036 \ R_{K^{*}}^{[0.045,1.1]} &= 0.66^{+0.11}_{-0.07} \pm 0.03 \ R_{K^{*}}^{[1.1,6]} &= 0.69^{+0.11}_{-0.07} \pm 0.05 \end{aligned}$$

3 observables deviating by $\sim 2\sigma - 2.5\sigma$ from the SM predictions

Could We Be Missing a Standard Model Effect?

[2] Radiative correction Kitahara et al., 1803.05881

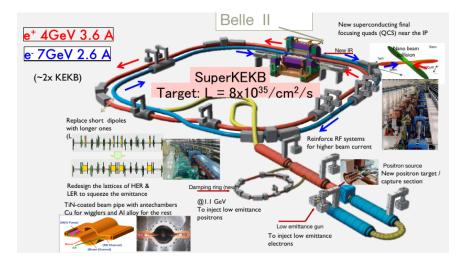
Another development. Soft-photon effects depend on lepton mass, which leads to corrections even in RD(*)

Soft-photon corrections to RD result in

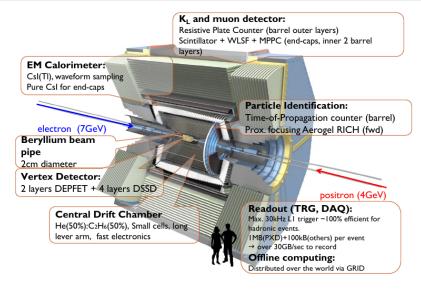
- (1) leading to $RD^+ \neq RD^0$
- (2) depending on photon energy cut
- (3) non-negligible constructive contribution to RD,

at most 4~6%

(Ryoutaro Watanabe in HFCKM/PPHI 2)

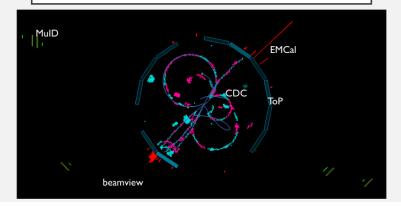

Many Possible New Physics Explanations

- (i) a vector boson (VB) that transforms as (1, 3, 0) under $SU(3)_C \times SU(2)_L \times U(1)_Y$, as in the SM.
- (ii) an $SU(2)_L$ -triplet scalar leptoquark (S_3) [(3, 3, -2/3).
- (iii) an $SU(2)_L$ -singlet vector leptoquark (U_1) [(3, 1, 4/3).
- $SU(2)_L$ -triplet vector leptoquark (U_3) $[(\mathbf{3}, \mathbf{3}, 4/3)].$
- Note to simply explain $b \to s\ell^+\ell^-$ we can have Z' (1, 1, 0) from U(1). One can consider both (1, 3, 0) and (1, 1, 0).

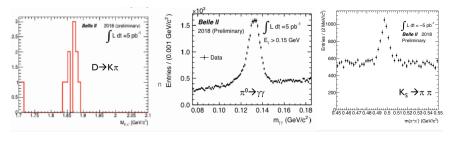

(Alakabha Datta in HFCKM/PPHI 2)

First Collisions at Belle II

The Machine: SuperKEKB

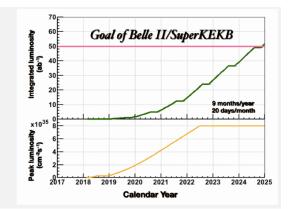


The Detector: Belle II


First Collisions

Wolfgang			

First Bumps!


D mesons

Kaons

Current Status and Schedule

- Phase I (complete)
 - Accelerator commissioning
- Phase 2 (now)
 - First collisions (20±20 fb⁻¹)
 - Partial detector
 - Background study
 - Physics possible
- Phase 3 ("Run I", early 2019)
 - Nominal Belle II start
- Ultimate goal: 50 ab⁻¹

Wolfg			

- $\blacktriangleright\,$ CKM picture of flavor and CP violation gives overall a consistent picture at the \sim 10% level ...
- ► ... but, over the last few years, several anomalies appeared (e.g. R_{K^(*)}, R_{D^{(*)})</sub>}
- Lattice QCD calculations continue to provide invaluable input with higher and higher precision
- Expect many exciting results from LHCb and Belle II in the near future