Recent status and future plan of China JinPing underground Laboratory

Qian YUE Tsinghua University May. 31, 2018

Outline :

- Physics based on UL
- International UL introduction
- China Jinping Underground Laboratory (CJPL)
- Experiments in CJPL-I
- CJPL-II and planned experiments inside
- Summary

Science based on UL

High energy cosmic-rays could contribute instantaneous and delayed backgrounds for some rare-event experiments and need to be stopped with deep rock overburden:

- Direct detections of Dark matter;
- Neutrino physics: 0vββ; solar, atmospheric, reactor, accelerator, and supernova neutrinos;
- Astrophysics: stellar reactions.....
- Proton decay;

Rock mechanics, seismology, and geophysics;

□Biology.....

International Main ULs

ULs and several main parameters

China Jinping Underground Laboratory

Convenient transportation

Highway+Special road access by car from nearest Xichang airport, cost 2h.

Direct flight from many main city to Xichang.

Logistic Condition of CJPL

Layout of CJPL-I

■ Main Lab Space: 6.5(W) x 6.5(H) x 42(L)

Background Measurement of CJPL-I

Energy (keV)

Rock background					
(Unit : Bq/kg)	K-40	Ra-226 (609keV)	Th-232 (911keV)		
Rock Sample	< 1.1	1.8 ± 0.2	< 0.27		
Ground Level(Beijing)	~600	~25	~50		

Neutron flux Measurement of CJPL-I

Fast neutron detector

Fast neutron flux compare with other UL

Underground laboratory	Fast neutron flux n/cm ² /s	Energy range	Depth (m)
YangYang	4.17×10 ⁻⁶	1-10MeV	700
Canfranc	0.41×10 ⁻⁶	1-10MeV	800
Gran Sasso	0.42×10 ⁻⁶	1-10MeV	1400
Boulby	1.72×10⁻ ⁶	>0.5MeV	1100
Modane	0.40×10 ⁻⁶	2-6MeV	1780
CJPL Hall	0.15×10⁻ ⁶	1-10MeV	2400
CJPL Poly- room	4.27×10⁻ ⁹	1-10MeV	2400

Fast neutron detector

Thermal neutron flux: < 4.4 x10⁻⁶ n/cm²/s

LBF in CJPL

Low background Facility Sensitivity : <1.0 mBq/kg

Summary of CJPL conditions

- Setup and run by THU and EHDC
- Deepest laboratory in the world
 - ~2400m rock overburden (6720 m.w.e)
 - Muon-induced background is negligible (~60muons/yr/m²)
- Low natural radioactivity in the laboratory
 - Marble stone with the lowest natural radioactivity
- Horizontal access to the laboratory
 - Large facilities directly transported to CJPL by truck
 - Personnel access by car
 - 20min from ground site to underground lab
- Environmental T: <18°C, save much power

Recent experiments in CJPL-I

LBF

PandaX

Jinping neutrino Experiment

CDEX recent status

> Now 10kg-scale Ge detector array for light DM search;

- New results accepted by PRL(arXiv:1802.09016);
- The best sensitivities on 4-5 GeV mass region for SI;
- > The best sensitivities below 4 GeV mass region for SD.

PandaX recent results

PhysRevLett.119.181302

Jinping Neutrino Experiment

1-ton Prototype of Jinping Neutrino Experiment

Physics goals:

- **1. Solar neutrino, geoneutrino, ...**
- 2. Measure fast neutron background
- 3. Test detection material: water, LS, and slow LS

Schedule:

- 1. Deliver the main body in 2016/12
- 2. Full assembly by 2017/03
- 3. Take data in 2017-2018

CJPL in Jinping tunnels

The layout of CJPL-II

- 4 main halls : 14m(H)×14m(W)×130m(L);
- Total Volume: 300K m³;
- Two expanded spaces:

 $C1-\phi 18m \times 32m(H)$ and $B2-27m(L)\times 14m(W)\times 30m(H)$

Status of CJPL-II

- **2015:** The rock excavations completed;
- **2016:** Expansion of two sites finished;
- 2017: Ventilation system installation finished.

CJPL-II project

- CJPL been selected as a project of national major
 S&T infrastructure of China.
- ✓ Funding: \$200M.

CJPL-II possible users

- CDEX-1T (Ge DM+DBD Exp.)
- PandaX-4T (Xe DM Exp.)
- LAr dark matter experiment
- Nuclear astroparticle physics
- Solar neutrino experiment
- Rock mechanics
- CUPID-China(DBD)

CDEX-1T experiment

- Large underground space in CJPL-II ready now;
- Started to install the 1800m³ liquid N2 tank;
- Finished by the end of 2018!

CDEX-1T experiment

- A ton-scale Ge detector array and LN shielding+cooling system in the CJPL-II;
- > Dark matter + (0vbb + Solar v).

PandaX in CJPL-II

- Now 4T LXe detector under construction;
- Future 30T LXe DM detector;
- 5×200kg HP(10-15bar) Xe136 gas TPC

Liquid Argon Dark Matter Experiment in CJPL-II

- A group from IHEP of China to explore LAr detector technique;
- Collaborate with DarkSide;

JINPING Underground Nuclear Astrophysics (JUNA) Experiment

- JUNA aims at direct measurement of (α,γ), (α,n) reactions in hydrostatic helium burning and (p, γ), (p, α) reactions in hydrostatic hydrogen burning;
- JUNA will provide key inputs of nuclear physics for understanding evolution of stars and origin of elements.

Physics	Reaction	Current	Desired
Massive star	¹² C(α,γ) ¹⁶ O	60%, 890 keV	20%, 220-380 keV
s-process neutron source	¹³ C(α,n) ¹⁶ O	60%, 279 keV	10%, 140-230 keV
Galaxy ²⁶ Al source	²⁵ Mg(p,γ) ²⁶ Al	20%, 92 keV	5%, 50-300 keV
F aboundace	¹⁹ F(p,α) ¹⁶ O	80 %, 189 keV	5 %, 50-250 keV

JUNA Astroparticle experiment

Now start to construct the infrastructure for accelerator and shielding system!

Jinping Neutrino Experiment Kilo-Ton scale from 2020

Summary

- CJPL-1 with deepest rock overburden in the world run now; Two DM experiments run in and published important physical results;
- CJPL-II with deepest rock overburden, largest space in the world under setup, funding from Chinese government approved;
- Experiments applying CJPL-II space including: DM, DBD, Neutrino, Astrophysics;
- The possible users of CJPL-II in the world are welcome.

