FRONTIERS OF ELECTROWEAK SYMMETRY BREAKING

Sally Dawson, BNL CIPANP, May 2018

HIGGS PROGRAM IS JUST BEGINNING

A lot of Higgs physics ahead!

PDG-MAY, 2017

J = 0

Mass $m = 125.09 \pm 0.24$ GeV Full width $\Gamma < 0.013$ GeV, CL = 95%

H⁰ Signal Strengths in Different Channels

See Listings for the latest unpublished results.

Combined Final States = 1.10 ± 0.11 $W W^* = 1.08 \stackrel{+0.18}{_{-0.16}}$ $ZZ^* = 1.29 \stackrel{+0.26}{_{-0.23}}$ $\gamma \gamma = 1.16 \pm 0.18$ $b\overline{b} = 0.82 \pm 0.30$ (S = 1.1) $\mu^+ \mu^- = 0.1 \pm 2.5$ $\tau^+ \tau^- = 1.12 \pm 0.23$ $Z\gamma < 9.5$, CL = 95% $t\overline{t} H^0$ Production = $2.3 \stackrel{+0.7}{_{-0.6}}$ Rates normalized to Standard Model predictions

Relatively large uncertainties

GOALS OF HIGGS PROGRAM

- Is it the Standard Model with nothing else?
 - Are there more Higgs particles?
- Are we closing in on new physics?
 - Can we predict the mass scale?
- Precision vs energy as tools
 - Deviations from SM often grow with energy

Precision frontier

Deviations from SM predictions

EVERY THING PREDICTED IN SM*

- Very precise predictions
 - Couplings to fermions proportional to mass
 - Couplings to gauge bosons proportional to mass
 - Higgs self-couplings proportional to M_H²

Couplings must have this pattern if model is correct

We know the μ has a different H coupling than the τ , but that's the only thing we know about the 2nd generation

* Except Higgs mass!

S. Dawson

PRECISE PREDICTIONS FOR PRODUCTION AND DECAY

- Rates to NNLO or NLO
- Gluon fusion dominates
- Rates increase with energy
- ttH and HH smallest rates

SO FAR EVERYTHING LOOKS SM-LIKE

2

• The Higgs couples to top (or does it?)

Gluon fusion production is indirect evidence

- 2018--observation of ttH production direct evidence for ttH coupling
 - ~50% deviations from SM allowed in ttH

ttH

NEW PHYSICS IN THE TOP-HIGGS SECTOR

Is the ttH coupling the Standard Model coupling?

• Non-SM contributions change rate/distributions

- Observation of gluon fusion production of Higgs at expected rate doesn't mean Higgs has SM ttH coupling
- Need ttH production
- High luminosity will pin down coupling

IS THIS GOOD ENOUGH?

- Higgs mass known to .2%
- Couplings to gauge bosons known at ~20% level
- Couplings to 3rd generation observed and are SM-like at ~20%
- Nothing about 2nd generation couplings
 - Although we know $H\mu\mu$ coupling \approx $H\tau\tau$ coupling
- Nothing about 1st generation couplings
- Very little about off-diagonal couplings
- Nothing about Higgs self-couplings

Just the beginning of the Higgs story!

ERA OF PRECISION CALCULATIONS

- New analytic and computational techniques
- Surprisingly large corrections to gluon fusion production:

See parallel talk by T. Neumann

GLOBAL PROGRAM OF CALCULATIONS

- Dominant Higgs production mechanism is gluon fusion
- Higgs production from gluon fusion known at NNNLO

Anastasiou, Duhr, Dulat, Herzog, Mistlberger, 1503.06056

Note stabilization at higher orders

Exact results in
$$M_t^{\bullet} \propto$$
 limit at NNNLO:
[Mislberger, 1802.00833]

$$\sigma(13 \ TeV) = 54.80 \ pb_{-6.42 \ \%}^{+4.28 \ \%}(theory)$$

$$\pm 1.96 \ \%(PDF) \pm 2.7\% \ (\alpha_s)$$

Threshold expansion works well for gluon initiated contributions, poorly for quark initiated contributions

GLOBAL PROGRAM OF CALCULATIONS

- Higgs plus jet production at with top mass dependence
- $M_t \rightarrow \infty$ limit doesn't capture kinematics properly (especially at large p_T)

Dawson, Lewis, Zeng, 1409.629

GLOBAL PROGRAM OF CALCULATIONS

- Higgs plus jet at NLO with full top mass dependence
- Top mass effects order 9% at NLO

 $\begin{aligned} \sigma(13 \ TeV) &= 16.01^{+1.59}_{-3.73} \ pb \ (full \ M_t \ dependence) \\ &= 14.63^{+3.3'}_{-2.54} \ pb \ (M_t \to \infty) \\ & \text{for } p_{\mathsf{T}}(\mathsf{jet}) > 30 \ \mathsf{GeV} \end{aligned}$

Jones, Kerner, Luisoni, 1802.00349

THEORY MATTERS

- Before we can use Higgs measurements to find new physics, we must understand the SM predictions
- Add all Higgs production and decay channels (ATLAS+CMS, 7-8 TeV data):

$$\frac{\sigma}{\sigma_{SM}} \equiv \mu = 1.09 \pm 0.07(stat) \pm .04(syst)$$
$$\pm .03(th \ bckd)^{+.07}_{-.06}(th \ signal)$$

Uncertainty from theory calculations dominates error!

STUDYING DEVIATIONS FROM THE SM

- Assume no new tensor structures, no new light particles
- Define scaling factors κ

$$\sigma \cdot BR(ii \to H \to jj) = \frac{\sigma_{ii}\Gamma_{jj}}{\Gamma_H}$$
$$\mu(gg \to H \to \tau^+\tau^-) = \frac{\sigma(gg \to H \to \tau^+\tau^-)}{\sigma(gg \to H \to \tau^+\tau^-)} |_{SM} = \frac{\kappa_g^2 \kappa_\tau^2}{\kappa_h^2}$$

- Approaches to loops: $\kappa_{\!\scriptscriptstyle \gamma},\,\kappa_{\!\scriptscriptstyle g}$ can be
 - Written as function of SM scaling factors: eg $\kappa_g = \kappa_g(\kappa_t, \kappa_b)$
 - Treated as free parameters to look for BSM contributions

S. Dawson

SIMILARITY OF HIGGS PROPERTIES TO SM HIGGS PROPERTIES

In general, BSM physics gives deviations in couplings from SM

$$\delta\kappa\sim rac{v^2}{\Lambda^2}$$
 $\kappa=1$ is SM

- LHC precision is typically ~20% on Higgs couplings
 - Coupling measurements sensitive to Λ ~ 800 GeV
- Direct searches restrict BSM physics to be above $\Lambda \sim 1 \text{ TeV}$

We don't expect big deviations

Required precision is moving target as BSM search limits increase!

EXPECTATIONS FOR PRECISION

- Scenario I: All systematic uncertainties same as now
- Scenario 2: theory uncertainty reduced by $\frac{1}{2}$, experimental systematics by $1/\sqrt{L}$

Updates in progress

Ultimate precision 5%

EXPECTATIONS FOR PRECISION

- Large impact of theory uncertainties (dashed)
- Theory will be limiting factor in understanding Higgs results

Updates in progress

THE PROBLEM WITH THE K APPROACH

- SM Higgs couplings fixed—cannot be varied separately
 - Can test consistency of SM hypothesis
- Run I approach:
 - Rescale fundamental Higgs couplings: κ_W , κ_Z , κ_f and loop induced couplings, κ_γ , κ_g , $\kappa_{\gamma Z}$
 - Simple and easy to implement
 - Electroweak corrections not included exactly
 - No information from angular distributions
 - How to interpret deviations?
 - Rescaling breaks gauge invariance, renormalizability

S. Dawson

NO SIGN OF MORE HIGGS-LIKE PARTICLES

- No shortage of models predicting more Higgs particles
 - Singlet model, 2HDM, MSSM, NMSSM
- Models typically do **not** predict masses of new Higgs particles
- Models typically have a limit where all the new particles are heavy and all the Higgs couplings "look like" the SM

REQUIRES EFFECTIVE FIELD THEORY FRAMEWORK

- Assume $SU(3) \times SU(2) \times U(1)$ gauge theory with no new light particles
- Assume Higgs particle is part of SU(2) doublet
- SM is low energy limit of effective field theory with towers of higher dimension operators

 $L = L_{SM} + \Sigma \frac{c_i}{\Lambda^2} O_i^{d=6} + \sigma \frac{c_i}{\Lambda^4} O_i^{d=8} + \dots$

- Can calculate in controlled expansion in SMEFT
- Assume Λ >>v, only dimension-6 operators are important

CAN'T JUST FIT HIGGS COUPLINGS

New physics that changes Higgs couplings typically changes
 3- and 4- gauge boson couplings also

- Changing ZWW, γWW vertices spoils high energy cancellations between contributions
- Effective Field Theory effects enhanced at high energy, high p_T

EXAMPLE: W⁺W⁻ PRODUCTION AT LHC

Baglio, Dawson, Lewis, 1708.03332

Fits change significantly when all allowed couplings included

Baglio, Dawson, Lewis , 1708.03332

FITS TO ANOMALOUS INTERACTIONS

- Finite number of relevant operators, can do global fits to Higgs couplings and WW interactions (no unique basis of operators)
 - Operators don't just rescale tree level interactions
 - Kinematic dependence of operators increases sensitivity

Many groups doing fits!

See parallel talk by C. Murphy for fit to 2018 data

I σ bounds

Need more precision!

Di Vita, Grojean, Panico, Rimbau, Vantalon, 1704.01953

WHAT DO WE LEARN BY FITTING HIGGS COUPLINGS?

- In any given high scale model, coefficients of EFT predicted in terms of small number of parameters
- Different coefficients are generated in different models
- By measuring the pattern of coefficients, information is gleaned about high scale physics

Dawson, Murphy, 1704.07851

HIGGS SELF-COUPLING BIG MILESTONE

 We don't know that the Higgs comes from the scalar potential

$$V = -\mu^2 \Phi^{\dagger} \Phi + \lambda (\Phi^{\dagger} \Phi)^2$$
$$V \rightarrow -\frac{M_H^2}{2} H^2 + \lambda_3 H^3 + \lambda_4 H^4$$

• SM is perturbative

$$\lambda_3 = \frac{M_H^2}{2v} \sim .13v \quad \lambda_4 = \frac{M_H^2}{8v^2} = .03$$

PROGRESS IN HH PREDICTIONS

• HH first occurs at one-loop

Goal: Measure λ_3

- Currently, experimental limits are $\sigma/\sigma_{SM} \lesssim 19$
- HH is major goal of luminosity upgrades
- $-0.7 < \kappa_{\lambda} = \lambda_3 / \lambda_{3,SM} < 7.7$ from rates at 3 ab⁻¹
- Improvement from distributions

Goncalves, Han, Kling, Plehn, Takeuchi, 1802.04319

- Large cancellation between diagrams
- Reduces sensitivity to HHH coupling
- Small rate!

PROGRESS IN HH CALCULATIONS

Borowka, Greiner, Heinrich, Jones, Kerner, Schlenk, Schubert, Zirke, 1604.06447

PROGRESS IN HH CALCULATIONS

• Recently, NLO with full top mass dependence, combined with NNLO in large top mass dependence (Numerically significant effects of top mass)

	\frown			
	\ldots			
\sqrt{s}	$13 \mathrm{TeV}$	14 TeV	$27 { m TeV}$	100 TeV
NLO [fb]	$27.78^{+13.8\%}_{-12.8\%}$	32.88 ^{+13.5%} -12.5%	$127.7^{+11.5\%}_{-10.4\%}$	$1147^{+10.7\%}_{-9.9\%}$
NLO _{FTapprox} [fb]	$28.91^{+15.0\%}_{-13.4\%}$	$34.25^{+14.7\%}_{-13.2\%}$	$134.1^{+12.7\%}_{-11.1\%}$	$1220{}^{+11.9\%}_{-10.6\%}$
NNLO _{NLO-i} [fb]	$32.69^{+5.3\%}_{-7.7\%}$	$38.66^{+5.3\%}_{-7.7\%}$	$149.3^{+4.8\%}_{-6.7\%}$	$1337^{+4.1\%}_{-5.4\%}$
NNLO _{B-proj} [fb]	$33.42^{+1.5\%}_{-4.8\%}$	$39.58^{+1.4\%}_{-4.7\%}$	$154.2^{+0.7\%}_{-3.8\%}$	$1406^{+0.5\%}_{-2.8\%}$
NNLO _{FTapprox} [fb]	$31.05^{+2.2\%}_{-5.0\%}$	$36.69^{+2.1\%}_{-4.9\%}$	$139.9^{+1.3\%}_{-3.9\%}$	$1224{}^{+0.9\%}_{-3.2\%}$
M_t unc. $\mathrm{NNLO}_{\mathrm{FTapprox}}$	$\pm 2.6\%$	±2.7%	$\pm 3.4\%$	±4.6%
$\rm NNLO_{FTapprox}/\rm NLO$	1.118	1.116	1.096	1.067

Grazzini, Heinrigh, Jones, Kallweit, Kerner, Lindert, Mazzitell, 1803.02463 Borowka, Greiner, Heinrich, Jones, Kerner, Schlenk, Zirke, 1608.04798

HH IS TEST CASE FOR NEW EWSB PHYSICS

- Add scalar singlet (simplest possible extension of SM)
- Large resonant effects when $M_{H} \sim 2M_{h}$

Can get factor of 20 enhancements

*Similar effects in MSSM, NMSSM models

[Dawson, Lewis, arXiv:1508.05397]

HH CAN GIVE INFORMATION ON ELECTROWEAK PHASE TRANSITION

• Models with scalar singlets can allow first order electroweak phase transition

Suppression of SM Higgs couplings

Kotwal, Ramsey-Musolf, No, Winslow, 1605.06123

- Motivation for high energy colliders
- Can probe region with EW phase transition in HH production

IN THE FUTURE

- Higgs physics is just beginning!
- Precision measurements require precision calculations
 - Starting to see higher order corrections with full top mass dependence
- Many possibilities for extended Higgs sectors
 - Next few years will significantly improve limits on new Higgs particles