CIPANP, Palm Springs, CA, 29 May 2018

KELLY M. PATTON (UW, INT)

PRESUPERNOVA NEUTRINOS: REALISTIC EMISSIVITIES FROM STELLAR EVOLUTION

COLLABORATORS: CECILIA LUNARDINI (ASU) ROBERT FARMER (U. OF AMSTERDAM) FRANK TIMMES (SESE ASU, JINA-CEE)

EVOLUTION OF MASSIVE STARS: CORE COLLAPSE

- As the star evolves, the core gets hotter and denser
- Successively heavier elements undergo burning, creating more heavy nuclei
- Iron core is formed, grows, then collapses

MOTIVATION

NEUTRINO EVOLUTION OF MASSIVE STARS

Odrzywolek and Heger Acta Physica Polonica B 41, 1611 (2010)

- Neutrino luminosity grows by orders of magnitude in last hours/days before collapse
 - Thermal processes ramp up as (T, ρ) increase
 - β processes also increase
 depending on isotopic
 composition
- Pre-collapse luminosity is only ~2 orders of magnitude below that of burst

DETECTABLE?

- We know burst is detectable (SN1987A)
- Energy spectrum peaks lower than the SN burst
 - Lower energy means lower cross section in detectors
- Can we see the presupernova too?

Asakura et al. (KamLAND) ApJ 818, 91 (2016)

NEUTRINO PRODUCTION

WHAT PRODUCES NEUTRINOS IN PRE-SN?

- Thermal processes
 - Pair annihilation
 - Photoneutrino process
 - $e^{\pm} + \gamma \to e^{\pm} + \nu_{\alpha} + \overline{\nu}_{\alpha}$
 - Plasmon decay
 - $\gamma^* \rightarrow \nu_{\alpha} + \overline{\nu}_{\alpha}$ (Bremsstrahlung)
 - (Recombination)
 - Itoh et al. (1996)

THERMAL PROCESSES

- Itoh et al. (1996) mapped out regions of dominance
- For the temperature and density during Si burning, pair annihilation dominates
- Assuming pair neutrinos only is a good first approximation

Guo and Qian arXiv:1608.02852

FIRST LOOK: ODRZYWOLEK ET AL. (2004)

Detector	Mass	Reactions	Number of	Flux at 1 kpc	Event rate	
	[kton]		Targets	$[cm^{-2}day^{-1}]$	$[day^{-1}]$	
Borexino	$0.3 (C_9 H_{12})$	$ar{ u}_e + p ightarrow e^+ + n$	$1.80 \cdot 10^{31}$	$2.8\cdot 10^{11}$	0.34	
		$ u_e + c^- ightarrow u_e + c^-$	$9.92\cdot 10^{31}$	$2.8\cdot 10^{11}$	0.49	
		$ar{ u}_e + e^- ightarrow ar{ u}_e + e^-$	$9.92\cdot 10^{31}$	$2.8\cdot10^{11}$	0.19	
		$ u_{\mu, au} + e^- ightarrow u_{\mu, au} + e^-$	$9.92\cdot 10^{31}$	1.0 · 1011	0.03	
		$ar{ u}_{\mu, au} + e^- ightarrow ar{ u}_{\mu, au} + e^-$	$9.92\cdot 10^{31}$	1.0 · 1011	0.026	
KamLAND	$0.2 (C_9 H_{12})$	$\bar{\nu}_e + p \rightarrow e^+ + n$	$8.55\cdot 10^{31}$	$2.8\cdot 10^{11}$	1.6	
	$0.8 \ (C_{12}H_{26})$	$\nu_e + e^- \rightarrow \nu_e + e^-$	$3.43\cdot 10^{32}$	$2.8\cdot 10^{11}$	1.7	
		$\bar{\nu}_e + e^- \rightarrow \bar{\nu}_e + e^-$	$3.43\cdot 10^{32}$	$2.8\cdot 10^{11}$	0.65	
		$\nu_{\mu,\tau} + e^- \rightarrow \nu_{\mu,\tau} + e^-$	$3.43\cdot 10^{32}$	$1.0\cdot10^{11}$	0.11	
		$\bar{\nu}_{\mu,\tau} + e^- \rightarrow \bar{\nu}_{\mu,\tau} + e^-$	$3.43\cdot 10^{32}$	$1.0\cdot 10^{11}$	0.09	
SNO	$1.7 (H_2 O)$	$\bar{\nu}_e + p \rightarrow e^+ + n$	$1.14\cdot 10^{32}$	$2.8\cdot 10^{11}$	2.2	
	$\perp (D_2 O)$	$\bar{ u}_e + d ightarrow e^+ + n + n$	$6.00\cdot 10^{31}$	$2.8\cdot 10^{11}$	0.004	
		$ u_x + d ightarrow u_x + p + n$	$6.00\cdot10^{31}$	$3.8\cdot10^{11}$	0.038	
		$\bar{\nu}_x + d \rightarrow \bar{\nu}_x + p + n$	$6.00\cdot10^{31}$	$3.8\cdot10^{11}$	0.032	
Super-K	$32 (H_2 O)$	$ar{ u}_e + p ightarrow e^+ + n$	$2.14\cdot 10^{33}$	$2.8\cdot 10^{11}$	41	
UNO	440 (H_2O)	$ar{ u}_e + p o e^+ + n$	$2.94\cdot 10^{34}$	$2.8\cdot 10^{11}$	560	
Hyper-K	540 (H_2O)	$\bar{\nu}_e + p \rightarrow e^+ + n$	$3.61\cdot 10^{34}$	$2.8\cdot 10^{11}$	687	

Odrzywolek, Misiaszek, and Kutschera Astropart. Phy. 21, 303 (2004)

- Si burning stage, pair neutrinos only
- Tens of events in Super-K
- Hundreds in Hyper-K
- ▶ 20 M_☉ star at D=
 1 kpc

LOOK AGAIN

- KamLAND (2015): 48 hrs before collapse, pair neutrinos only
 - 3σ detection at 660 pc for $25 M_{\odot}$
 - Same for $15M_{\odot}$ at 240 pc

Asakura et al. (KamLAND) *ApJ* **818**, 91 (2016)

Kato et al. (2015): pair and plasmon decay neutrinos

 Discrimination between ONe core and Fe core progenitors

Kato et al. ApJ 808, 168 (2015)

YOSHIDA ET AL. (2016):TIME EVOLUTION

- Definite dips and spikes observed due to starting and stopping of different core burning phases
- Observation of time evolution could allow discrimination of stellar mass

Yoshida et al. *Phys. Rev. D* **93**, 123012 (2016)

ANOTHER PROCESS NEEDS TO BE INCLUDED...

- To this point, all studies have been thermal neutrinos only
- But there's a second type of process to consider

Process	es	Formulae	Main References
Beta	β [±] decay	$\begin{split} A(N,Z) &\to A(N-1,Z+1) + e^- + \overline{\nu}_e \\ A(N,Z) &\to A(N+1,Z-1) + e^+ + \nu_e \end{split}$	Fuller <i>et al.</i> (1980, 1982b, a, 1985), Langanke and Martinez-Pinedo (2001),
	e ⁺ /e ⁻ capture	$A(N,Z) + e^- \to A(N+1,Z-1) + \nu_e$ $A(N,Z) + e^+ \to A(N-1,Z+1) + \overline{\nu}_e$	Oda et al. (1994); Odrzywolek (2009)
Thermal	plasma photoneutrino	$\gamma^* ightarrow u_lpha + \overline{ u}_lpha$ $e^{\pm} + \gamma ightarrow e^{\pm} + u_lpha + \overline{ u}_lpha$	Ratkovic et al. (2003); Odrzywolek (2007) Dutta et al. (2004)
	pair	$e^+ + e^- ightarrow u_lpha + \overline{ u}_lpha$	Misiaszek et al. (2006)

MISSING PIECE: BETA PROCESSES

- Beta processes
- Many isotopes present in core in late stages
- Electron neutrinos and antineutrinos produced through decay or capture reactions
- Importance of beta processes in late stages varies depending on stellar evolution model used

$$A(N, Z) \to A(N - 1, Z + 1) + e^{-} + \bar{\nu}_{e}$$

$$A(N, Z) \to A(N + 1, Z - 1) + e^{+} + \nu_{e}$$

$$A(N, Z) + e^{-} \to A(N - 1, Z + 1) + \nu_{e}$$

$$A(N, Z) + e^{+} \to A(N + 1, Z - 1) + \bar{\nu}_{e}$$

MISSING PIECE: BETA PROCESSES

- Odrzywolek PRC 80 045801 (2009)
 - Assume nuclear statistical equilibrium

- Single (Τ, ρ, Y_e) point typical for large star in Si burn phase
- Majority of neutrinos produced via beta processes (green)

Odrzywolek *PRC* **80,** 045801 (2009)

BETA SPECTRUM

- Shape of spectrum completely determined by phase space of electrons involved
- Depends on chemical potential μ_e , temperature *T*, which we get from (see Farmer et al. arXiv:1611.01207)
- $N_{EC,PC}$ and N_{β} are normalization factors so our rates match tabulated rates

$$\phi_{EC,PC} = N_{EC,PC} \frac{E_{\nu}^{2} (E_{\nu} - Q)^{2}}{1 + \exp\left((E_{\nu} - Q - \mu_{e})/kT\right)} \Theta(E_{\nu} - Q - m_{e})$$

$$\phi_{\beta} = N_{\beta} \frac{E_{\nu}^{2} (Q - E_{\nu})^{2}}{1 + \exp\left((E_{\nu} - Q + \mu_{e})/kT\right)} \Theta(Q - m_{e} - E_{\nu})$$

$$Q_{ij} = M_p - M_d + E_i - E_j$$

EFFECTIVE Q-VALUES

Fuller, Fowler, and Newman ApJSS 48, 279 (1982)

$$Q_{ij} = M_p - M_d + E_i - E_j$$

- Q-value simple to calculate in theory
- In reality, initial and final states unknown
- Define "effective Q-value" as the value that reproduces tabulated average energy [1,2,3]
 - Calculate spectrum and average energy with any Q-value
 - Adjust Q-value until average energy matches

$$\Phi_{\nu,\overline{\nu}} = \sum_{k} \phi_k n_k = \sum_{k} X_k \phi_k \frac{\rho}{m_p A_k}$$

[1] Langanke and Martinez-Pinedo, ADNDT **79**, 1 (2001).
[2] Oda, Hino, Muto, Takahara, and Sato, ADNDT **56**, 231 (1994).
[3] Fuller, Fowler, and Newman ApJ **252**, 715 (1982).

DOMINANT PROCESSES

- Mainly pair or beta, with a few islands of photoneutrino dominance in total emissivity
- For detectable energies (E > 2 MeV), beta dominance is extended
- Beta very important in the core at t_c

TIME EVOLUTION

HOW MUCH DO BETA PROCESSES CONTRIBUTE OVER TIME?

Figure from from KMP, C. Lunardini, R. J. Farmer, and F. X. Timmes ApJ 851, 6 (2017)

KATO ET AL. (2017)

Kato et al. arXiv:1704:05480 (2017)

- Included beta processes
- Found electron capture dominates v_e emission in progenitor phase
- β- decay dominates ν_e
 emission at a few
 hundred seconds pre collapse and after

KATO ET AL. FOLLOW UP

KATO ET AL. (2017)

- Kato et al. find β processes dominate over pair annihilation for antineutrinos at late times
 - Use an expanded isotope list, with rates adapted from a terrestrial environment to a stellar one
 - More neutron-rich isotopes makes more antineutrinos

Kato et al. arXiv:1704:05480 (2017)

TIME EVOLUTION

HOW MUCH DO BETA PROCESSES CONTRIBUTE?

- Dominate the luminosity at high energies ν_e
- Contribution increases over time, mostly electron captures
- Less contribution for $\bar{
 u}_e$
- Able to trace the highest contributing isotopes over time
- Large portion of β neutrinos come from just a handful of isotopes

Figure from from KMP, C. Lunardini, R. J. Farmer, and F. X. Timmes ApJ 851, 6 (2017)

DETECTION POSSIBILITIES: WINDOW OF OBSERVABILITY (15 M_{\odot})

- 1 kpc about 2 hrs
 pre-collapse for
 E ~ 0.5 20 MeV
- 200 pc Could see as early as 10 hrs pre-collapse

DETECTION POSSIBILITIES: NUMBER OF EVENTS (D = 1 KPC)

	1								
detector	composition	mass	interval	N_{β}^{CC}	N_{β}^{el}	N ^{CC}	N ^{el}	$N^{tot} = N^{CC} + N^{el}$	
JUNO	$C_n H_{2n}$	17 kt	$E_e \ge 0.5 \text{ MeV}$	3.19	2.34	10.1	7.19	17.3	
				[0.09]	[4.32]	[2.592]	[10.2]	[12.8]	
SuperKamiokande	H_2O	22.5 kt	$E_e \ge 4.5 \text{ MeV}$	0.04	0.02	0.43	0.03	0.45	
				[0.00]	[0.05]	[0.15]	[0.06]	[0.21]	
DUNE	LAr	40 kt	$E \ge 5 \text{ MeV}$	0.017	0.013	0.046	0.018	0.063 [Inve	rtec
				[0.27]	[0.032]	[0.33]	[0.039]	[0.37]	

Normal

 $30 M_{\odot}$

 $15M_{\odot}$

detector	composition	mass	interval	N_{β}^{CC}	N_{β}^{el}	Λ	N ^{CC}	N ^{el}	1	$N^{tot} = N^{CC} + N^{el}$
JUNO	$C_n H_{2n}$	17 kt	$E_e \ge 0.5 \text{ MeV}$	1.83	4.40	4	40.1	32.1		72.3
				[0.05]	[9.47]	[1	13.1]	[42.7]		[55.9]
SuperKamiokande	H_2O	22.5 kt	$E_e \ge 4.5 \text{ MeV}$	0.063	0.053	2	2.27	0.098		2.37
				[0.00]	[0.13]	[[0.78]	[0.20]		[0.98]
DUNE	LAr	40 kt	$E \ge 5 \text{ MeV}$	0.05	0.04	(0.19	0.06		0.25
				[0.76]	[0.09]] [[1.1]	[0.13]		[1.2]

- Large LS detector like JUNO is best chance due to low threshold
- DUNE has best chance for probing isotopic composition (for nearby star)

Tables from from KMP, C. Lunardini, R. J. Farmer, and F. X. Timmes ApJ 851, 6 (2017)

WHAT'S NEXT?

- Detectability
 - Include realistic detector response and backgrounds
- Nuclear physics
 - Effective-Q approximation could be improved
- More nuclear physics processes?
 - Neutral current de-excitations (see eg. Misch and Fuller arXiv: 1607.01448; Misch, Sun and Fuller ApJ 852 43 (2018))
- Failed SN?

THANK YOU TO...

- My collaborators: Cecilia Lunardini, Rob Farmer, and Frank Timmes
- The CIPANP 2018 organizers

Thanks for listening!