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h
F1(Q

2) �µ + F2 (Q
2)
i⇥µ�q�
2MN

i
UP

GEp(Q
2) ⇡ 1� 1

6
Q2hr2Eip +O(Q4)

GE(Q
2) = F1(Q

2)� Q2

4M2
N

F2(Q
2)

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

0.0 0.1 0.2 0.3 0.4 0.5

G
p E

Q2

(GeV

2

)

Alberico et al parametrization

lattice data

0.10 0.15 0.20 0.25 0.30 0.35 0.40
m⇡ [GeV]

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

(r
2 1
)u

�
d

[fm
2
]

HBChPT+�

32c64 fine
32c96 coarse
24c24 coarse
24c48 coarse

32c48 coarse
48c48 coarse
µp + PDG
PDG 2012

t
sink

� t
source

= 0.93, 1.16, 1.39 fm
+extrapolation

Excited states are 
worse for mπ<200 MeV

extrap. 
    1.39 
     1.16 
      0.93 
      fm

hr2i = �6
dG(Q2)

dQ2

���
Q2=0



 LQCD and the Proton Radius CIPANP 2018, Palm Springs, CA

    

Sergey N. Syritsyn, for LHP collab

Electric Form Factor at the Physical Point
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FIG. 5. Isovector magnetic form factor. The notation is the
same as that in Fig. 4. For the summation and two-state fit
methods, the largest sink-source separation included in the fit
is kept fixed at thighs = 14a = 1.3 fm.

FIG. 6. Isovector electric Sachs form factor as a function
of the momentum transfer squared (Q2). Symbols for the
plateau method follow the notation of Figs. 2 and 3. Results
from the summation method are shown with open diamonds
and for the two-state fit method with the crosses. The solid
line shows Gp

E(Q
2)�Gn

E(Q
2) using Kelly’s parameterization

of the experimental data [15] with parameters taken from Al-
berico et al. [16].

discrepancy given the consistency of our results at three
separations, as well as with those extracted using the
summation and the two-state fit method. This small dis-
crepancy could be due to suppressed pion cloud e↵ects,
due to the finite volume, that could be more significant
at low momentum transfer. For example, a study of the

magnetic dipole form factor G

M1

in the N ! � transi-
tion using the Sato-Lee model predicts larger pion cloud
contributions at low momentum transfer [17]. Lattice
QCD computations also observe a discrepancy at lower
Q

2 for G

M1

when compared to experiment [18]. Analy-
sis on a larger volume is ongoing to investigate volume
e↵ects not only in G

M

(Q2) but also for other nucleon
matrix elements and the results will be reported in sub-
sequent publications. Our results for the form factors
at all sink-source separations and using the summation
and two-state fit methods are included in Appendix A in
Tables VIII to XI. Preliminary results for the isovector
electromagnetic form factors have been presented for this
ensemble in Refs. [19, 20].

FIG. 7. Isovector magnetic Sachs form factor as a function of
the momentum transfer squared. The notation is the same as
that of Fig. 6.

2. Isoscalar contributions

We perform a similar analysis for the isoscalar contri-
butions, denoted by G

u+d

E

(Q2) and G

u+d

M

(Q2). As men-
tioned, we use the combination (u + d)

/3 in the matrix
element for the isoscalar such that it yields Gu+d
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(Q2) the indi-
vidual proton and neutron form factors can be extracted.
While isovector matrix elements receive no disconnected
contributions since they cancel in the isospin limit, the
isoscalar form factors do include disconnected fermion
loops, shown schematically in Fig. 1. These disconnected
contributions are included for the first time here at the
physical point to obtain the isoscalar form factors.
The connected isoscalar three-point function is com-

puted using the same procedure as in the isovector
case. We show results for the connected contribution
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FIG. 5. Isovector magnetic form factor. The notation is the
same as that in Fig. 4. For the summation and two-state fit
methods, the largest sink-source separation included in the fit
is kept fixed at thighs = 14a = 1.3 fm.

FIG. 6. Isovector electric Sachs form factor as a function
of the momentum transfer squared (Q2). Symbols for the
plateau method follow the notation of Figs. 2 and 3. Results
from the summation method are shown with open diamonds
and for the two-state fit method with the crosses. The solid
line shows Gp

E(Q
2)�Gn

E(Q
2) using Kelly’s parameterization

of the experimental data [15] with parameters taken from Al-
berico et al. [16].

discrepancy given the consistency of our results at three
separations, as well as with those extracted using the
summation and the two-state fit method. This small dis-
crepancy could be due to suppressed pion cloud e↵ects,
due to the finite volume, that could be more significant
at low momentum transfer. For example, a study of the

magnetic dipole form factor G

M1

in the N ! � transi-
tion using the Sato-Lee model predicts larger pion cloud
contributions at low momentum transfer [17]. Lattice
QCD computations also observe a discrepancy at lower
Q

2 for G

M1

when compared to experiment [18]. Analy-
sis on a larger volume is ongoing to investigate volume
e↵ects not only in G

M

(Q2) but also for other nucleon
matrix elements and the results will be reported in sub-
sequent publications. Our results for the form factors
at all sink-source separations and using the summation
and two-state fit methods are included in Appendix A in
Tables VIII to XI. Preliminary results for the isovector
electromagnetic form factors have been presented for this
ensemble in Refs. [19, 20].

FIG. 7. Isovector magnetic Sachs form factor as a function of
the momentum transfer squared. The notation is the same as
that of Fig. 6.

2. Isoscalar contributions

We perform a similar analysis for the isoscalar contri-
butions, denoted by G
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(Q2) the indi-
vidual proton and neutron form factors can be extracted.
While isovector matrix elements receive no disconnected
contributions since they cancel in the isospin limit, the
isoscalar form factors do include disconnected fermion
loops, shown schematically in Fig. 1. These disconnected
contributions are included for the first time here at the
physical point to obtain the isoscalar form factors.
The connected isoscalar three-point function is com-

puted using the same procedure as in the isovector
case. We show results for the connected contribution

mπ =130 MeV  a=0.094 fm 
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Figure 3: The 8 ensemble data for the normalized electric form factor GE/gV . The overlaid red band
shows our dipole result given in Table 5. The black dashed line shows the phenomenological value
ME = 0.780(5) in both panels. The corresponding straight lines give their slopes, �r2

E/6, at Q2 = 0.
Experimental data paramterized by the Kelly curve is shown by the purple dotted line.

Table 3: Mean square electric charge radius hr2
Ei. The first column shows the terms included in the

chiral continuum extrapolation defined in Eq. (3). The rest is the same as in Table 2.

2-state 3⇤-state
dipole z2+4 z3+4 dipole z2+4 z3+4

a, ln M2
⇡, FV 0.473(32) 0.475(83) 0.529(160) 0.619(49) 0.638(124) 0.801(174)

a, ln M2
⇡ 0.531(21) 0.528(54) 0.730(097) 0.580(30) 0.561(071) 0.738(105)

5 The Magnetic Form Factor

The z�expansion fits to GM(Q2) are much less stable since the point F2(Q2 = 0) cannot be extracted
from Eq. (4); it is obtained from the fit in Q2. As a result, the z�expansion estimates in Table 4 are
only with terms up to z3. Results of fits with sumrules are even less stable and not presented here.
Using the data from the 8 ensembles, we perform the continuum-chiral extrapolations for the magnetic
charge radius rM and the magnetic moment µ using the ansatz:

hr2
Mi(a,M⇡, L) = cM

1 + cM
2 a + cM

3 /M⇡ + cM
4 /M⇡ exp(�M⇡L) , (8)
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1 � 2

M⇡L

!
exp(�M⇡L) . (9)

The form of the chiral and FV correction terms in hr2
Mi are taken from Ref. [3]. The FV term in µ is

taken from Ref. [9]. The NLO chiral correction in µ has a known coe�cient, (g2
AMN)/(4⇡F2

⇡)M⇡(1 +
(3M⇡)/(MN) ln(M2

⇡/�
2)) [10], however, there is an additional chiral log at the same order, i.e., pro-

portional to M2
⇡, that involves unknown LEC. To include both chiral logs, an additional parameter is

needed. Since we have data over a limited range of M2
⇡ and with essentially three values of M2

⇡, we
neglect the chiral log corrections. For the same reason, we also leave cµ3 a free parameter rather than
take the form predicted by �PT. The results of the fits, with and without the respective FV correction
term, are summarized in Table 4.
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FIG. 5. Isovector magnetic form factor. The notation is the
same as that in Fig. 4. For the summation and two-state fit
methods, the largest sink-source separation included in the fit
is kept fixed at thighs = 14a = 1.3 fm.

FIG. 6. Isovector electric Sachs form factor as a function
of the momentum transfer squared (Q2). Symbols for the
plateau method follow the notation of Figs. 2 and 3. Results
from the summation method are shown with open diamonds
and for the two-state fit method with the crosses. The solid
line shows Gp

E(Q
2)�Gn

E(Q
2) using Kelly’s parameterization

of the experimental data [15] with parameters taken from Al-
berico et al. [16].

discrepancy given the consistency of our results at three
separations, as well as with those extracted using the
summation and the two-state fit method. This small dis-
crepancy could be due to suppressed pion cloud e↵ects,
due to the finite volume, that could be more significant
at low momentum transfer. For example, a study of the

magnetic dipole form factor G

M1

in the N ! � transi-
tion using the Sato-Lee model predicts larger pion cloud
contributions at low momentum transfer [17]. Lattice
QCD computations also observe a discrepancy at lower
Q

2 for G

M1

when compared to experiment [18]. Analy-
sis on a larger volume is ongoing to investigate volume
e↵ects not only in G

M

(Q2) but also for other nucleon
matrix elements and the results will be reported in sub-
sequent publications. Our results for the form factors
at all sink-source separations and using the summation
and two-state fit methods are included in Appendix A in
Tables VIII to XI. Preliminary results for the isovector
electromagnetic form factors have been presented for this
ensemble in Refs. [19, 20].

FIG. 7. Isovector magnetic Sachs form factor as a function of
the momentum transfer squared. The notation is the same as
that of Fig. 6.

2. Isoscalar contributions

We perform a similar analysis for the isoscalar contri-
butions, denoted by G

u+d

E

(Q2) and G

u+d

M

(Q2). As men-
tioned, we use the combination (u + d)

/3 in the matrix
element for the isoscalar such that it yields Gu+d
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n

E,M

(Q2) the indi-
vidual proton and neutron form factors can be extracted.
While isovector matrix elements receive no disconnected
contributions since they cancel in the isospin limit, the
isoscalar form factors do include disconnected fermion
loops, shown schematically in Fig. 1. These disconnected
contributions are included for the first time here at the
physical point to obtain the isoscalar form factors.
The connected isoscalar three-point function is com-

puted using the same procedure as in the isovector
case. We show results for the connected contribution

mπ =130 MeV  a=0.094 fm 
[1706.00469(ETMC)]

0.0

0.2

0.4

0.6

0.8

1.0

0 0.2 0.4 0.6 0.8 1 1.2 1.4

G
E
/g
V

Q2 [GeV2]

Kelly, 2004
0.780(5)GeV
0.99(3)GeV
a12m310
a12m220L
a09m310
a09m220
a09m130
a06m310
a06m220
a06m135

(a) 2-state

0.0

0.2

0.4

0.6

0.8

1.0

0 0.2 0.4 0.6 0.8 1 1.2 1.4

G
E
/g
V

Q2 [GeV2]

Kelly, 2004
0.780(5)GeV
0.87(3)GeV
a12m310
a12m220L
a09m310
a09m220
a09m130
a06m310
a06m220
a06m135

(b) 3⇤-state

Figure 3: The 8 ensemble data for the normalized electric form factor GE/gV . The overlaid red band
shows our dipole result given in Table 5. The black dashed line shows the phenomenological value
ME = 0.780(5) in both panels. The corresponding straight lines give their slopes, �r2

E/6, at Q2 = 0.
Experimental data paramterized by the Kelly curve is shown by the purple dotted line.

Table 3: Mean square electric charge radius hr2
Ei. The first column shows the terms included in the

chiral continuum extrapolation defined in Eq. (3). The rest is the same as in Table 2.

2-state 3⇤-state
dipole z2+4 z3+4 dipole z2+4 z3+4

a, ln M2
⇡, FV 0.473(32) 0.475(83) 0.529(160) 0.619(49) 0.638(124) 0.801(174)

a, ln M2
⇡ 0.531(21) 0.528(54) 0.730(097) 0.580(30) 0.561(071) 0.738(105)

5 The Magnetic Form Factor

The z�expansion fits to GM(Q2) are much less stable since the point F2(Q2 = 0) cannot be extracted
from Eq. (4); it is obtained from the fit in Q2. As a result, the z�expansion estimates in Table 4 are
only with terms up to z3. Results of fits with sumrules are even less stable and not presented here.
Using the data from the 8 ensembles, we perform the continuum-chiral extrapolations for the magnetic
charge radius rM and the magnetic moment µ using the ansatz:

hr2
Mi(a,M⇡, L) = cM

1 + cM
2 a + cM

3 /M⇡ + cM
4 /M⇡ exp(�M⇡L) , (8)

µ(a,M⇡, L) = cµ1 + cµ2a + cµ3 M⇡ + cµ4 M⇡

 
1 � 2

M⇡L

!
exp(�M⇡L) . (9)

The form of the chiral and FV correction terms in hr2
Mi are taken from Ref. [3]. The FV term in µ is

taken from Ref. [9]. The NLO chiral correction in µ has a known coe�cient, (g2
AMN)/(4⇡F2

⇡)M⇡(1 +
(3M⇡)/(MN) ln(M2

⇡/�
2)) [10], however, there is an additional chiral log at the same order, i.e., pro-

portional to M2
⇡, that involves unknown LEC. To include both chiral logs, an additional parameter is

needed. Since we have data over a limited range of M2
⇡ and with essentially three values of M2

⇡, we
neglect the chiral log corrections. For the same reason, we also leave cµ3 a free parameter rather than
take the form predicted by �PT. The results of the fits, with and without the respective FV correction
term, are summarized in Table 4.

mπ =130..310 MeV  a=0.06..0.12 fm 
[1801.01635 (PNDME)]

GE(Q
2) = F1(Q

2)� Q2

4M2
N

F2(Q
2)

GEv = GEp �GEn

Lattice results at physical mπ overestimate  
GEv(Q2=0.4 GeV2) by 15-20% 

finite volume? 
excited states?
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[ETMC 2017]
dipole(o), z-expn(f)

[LHPC 2017]
z-expn

[RBC/LHP, in prep.]
z-expn

Charge Radius at/near the Physical Pion mass

strong contributions from excited states

quasielastic neutrino scattering, Q2 = −q2 ≥ 0. As discussed in the Introduction, an expansion
at q2 = 0 defines an “axial mass parameter” mA, via

FA(q
2) = FA(0)

[

1 +
2

m2
A

q2 + . . .

]

=⇒ mA ≡

√

2FA(0)

F ′
A(0)

. (5)

Equivalently, we may define an “axial radius” rA, via

FA(q
2) = FA(0)

[

1 +
r2A
6
q2 + . . .

]

=⇒ rA ≡

√

6F ′
A(0)

FA(0)
. (6)

The factors appearing in (5) and (6) are purely conventional, motivated by the dipole ansatz
(2), and by the analogous charge-radius definition for the vector form factors. Asymptotically,
perturbative QCD predicts [10, 11] a ∼ 1/Q4 scaling, up to logarithms, for the axial-vector
form factor. However, the region Q2 ! 1GeV2 is far from asymptotic, and the functional
dependence of FA(q2) remains poorly constrained at accessible neutrino energies.

2.2 Analyticity

−Q2
max 9m2

π

t z

Figure 1: Conformal mapping of the cut plane to the unit circle.

We proceed along lines similar to the vector form factor analysis in [9]. Recall the dispersion
relation for the form factor,

FA(t) =
1

π

∫ ∞

tcut

dt′
ImFA(t′ + i0)

t′ − t
, (7)

where t ≡ q2 and the integral starts at the three-pion cut, tcut = 9m2
π. We can make use

of this model-independent knowledge by noticing that the separation between the singular
region, t ≥ tcut, and the kinematically allowed physical region, t ≤ 0, implies the existence of
a small expansion parameter, |z| < 1. As illustrated in Fig. 1, by a standard transformation,
we map the domain of analyticity onto the unit circle in such a way that the physical region
is mapped onto an interval:

z(t, tcut, t0) =

√
tcut − t−

√
tcut − t0√

tcut − t+
√
tcut − t0

, (8)

3

(2m⇡)
2

z =

p
tcut � t�

p
tcut � t0p

tcut � t+
p
tcut � t0

model-independent fits (eg z-expansion)

2-state

3*-state

t=10a
summ.

2-state

2-state

"dipole" fits

G(Q2) ⇠
X

ak[z(t = �Q2)]k

G(Q2) ⇠ 1

(1 +Q2/M2
D)2

hr2i = 12

M2
D
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Smaller Momenta: Twisted Boundary Conditions

Quantized lattice momenta for PBC

 (x+ L) =  (L) pµ =
2⇡

Lµ
nµ

m⇡L & 4with minimally acceptable
pmin . ⇡

2
m⇡ ⇡ 0.21GeV

Q2
min ⇡ 0.05GeV2

7

�V�i

�V �T�V�2 � C 00
2,3

C2,3

⌘ C 0
2,3

FIG. 1: Left: Nucleon two-point (top) and three-point (bottom) functions . The solid black circles represent the nucleon source and

sink, the black square in the three-point function represents the current insertion. The red line refers to the propagator which we use

for computing the momentum derivatives of the correlators which carry therefore the derivative vertex (solid red circle). The right panel

shows the representation of the derivative vertex for the simplified case of unsmeared propagators.

this symmetry group there is a baryon octet that contains the ordinary (untwisted) nucleons, as well as states with
one or two r quarks. We are interested in the states with one r quark, and we find that there are two kinds: an isospin
singlet and a triplet, the ⇤

r

and ⌃
r

, respectively. This was previously discussed in Ref. [30].

For the states with quark content udr we use interpolating operators

�
⌃r =

1p
2

([rud] + [rdu]) ,

�
⇤r =

1p
6

(2[udr] � [rud] � [dru]) ,

(40)

where [pqr] ⌘ ✏abc(p̃T
a

C�
5

1+�

0

2

q̃
b

)r̃
c

. When contracted with the projector 1+�

0

2

, the flavor-singlet operator, 1/
p

3([udr]+

[rud] + [dru]), vanishes and the ⇤
r

operator can be simplified to �
⇤r =

q
3

2

[udr]. We consider three-point functions

for the transition from a state with one r quark to an ordinary nucleon:

CX!N

3

(~p, ~p 0, ⌧, T ) =
X

~x,~y

e�i~p

0
(~x�~y) Tr [�

pol

h�(~x, T )O(~y, ⌧)�̄
X

(0)i] , (41)

where O = ū�r is a quark bilinear and X is ⌃
r

or ⇤
r

. The initial momentum ~p is implied in the initial state due
to the twisted boundary conditions for the r quark. The ground-state contribution is proportional to the matrix
element hN(~p 0)|O|X(~p)i for which we will evaluate @

@~p

at ~p 0 = ~p = 0. In practice, we simply use our already coded

expressions for the connected diagrams in the nucleon three-point functions Cq

3

with O
q

= q̄�q, q 2 {u, d}, and replace
the propagator connecting the nucleon source and O

q

with a first- or second-derivative propagator. By comparing the
contractions, we find the relations

C⌃r!N

3

=
1p
2
Cd

3

,

C⇤r!N

3

=
1p
6

�
2Cu

3

� Cd

3

�
,

(42)

where the r propagator is substituted into the evaluation of the right-hand-side expressions as described above. A
similar consideration was made in Ref. [30]; these relations could also be derived from SU(3) symmetry.

When forming ratios, we must use the appropriate two-point functions: taking Eq. (16) with the three-point function
CX!N

3

, all nucleon two-point functions that take the initial-state momentum ~p must be replaced by the two-point
function for state X. Once we have formed the ratios for the X ! N matrix elements, we can invert the relations in
Eq. (42) to obtain the nucleon matrix elements of O

u

and O
d

.

baryons with new twisted valence "flavor"  r

no sea twisted flavor ⇒ additional finite volume effects 
[F.J.Jiang, B.Tiburzi (0810.1495)]

qµ = �pµ

hN(~p0 = 0) J⌫(q)N̄(0)i

Twisted BC

arbitrary momenta pµ =
2⇡

Lµ
nµ +

✓µ
Lµ

 (x+ L̂µ) = e

i✓µ
 (x)
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Expansion in Lattice Momentum: Correlators

C(q) = C(0) + �pµ
@C(q)

@qµ
+

1

2
�pµ�p⌫

@2C(q)

@qµ@q⌫
+ . . .

[de Divitiis, Petronzio, Tantalo (2012)]
compute correlator expansion

using propagator derivatives
� /D

�1

�pµ
= � /D

�1 � /D

�pµ
/D
�1

�2 /D
�1

�p2µ
= � /D

�1 �2 /D

�p2µ
/D
�1

+ 2 /D
�1 � /D

�pµ
/D
�1 � /D

�pµ
/D
�1

(conserved) vector current"tadpole"
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FIG. 1: Left: Nucleon two-point (top) and three-point (bottom) functions . The solid black circles represent the nucleon source and

sink, the black square in the three-point function represents the current insertion. The red line refers to the propagator which we use

for computing the momentum derivatives of the correlators which carry therefore the derivative vertex (solid red circle). The right panel

shows the representation of the derivative vertex for the simplified case of unsmeared propagators.

this symmetry group there is a baryon octet that contains the ordinary (untwisted) nucleons, as well as states with
one or two r quarks. We are interested in the states with one r quark, and we find that there are two kinds: an isospin
singlet and a triplet, the ⇤

r

and ⌃
r

, respectively. This was previously discussed in Ref. [30].

For the states with quark content udr we use interpolating operators

�
⌃r =

1p
2

([rud] + [rdu]) ,

�
⇤r =

1p
6

(2[udr] � [rud] � [dru]) ,

(40)

where [pqr] ⌘ ✏abc(p̃T
a

C�
5

1+�

0

2

q̃
b

)r̃
c

. When contracted with the projector 1+�

0

2

, the flavor-singlet operator, 1/
p

3([udr]+

[rud] + [dru]), vanishes and the ⇤
r

operator can be simplified to �
⇤r =

q
3

2

[udr]. We consider three-point functions

for the transition from a state with one r quark to an ordinary nucleon:

CX!N

3

(~p, ~p 0, ⌧, T ) =
X

~x,~y

e�i~p

0
(~x�~y) Tr [�

pol

h�(~x, T )O(~y, ⌧)�̄
X

(0)i] , (41)

where O = ū�r is a quark bilinear and X is ⌃
r

or ⇤
r

. The initial momentum ~p is implied in the initial state due
to the twisted boundary conditions for the r quark. The ground-state contribution is proportional to the matrix
element hN(~p 0)|O|X(~p)i for which we will evaluate @

@~p

at ~p 0 = ~p = 0. In practice, we simply use our already coded

expressions for the connected diagrams in the nucleon three-point functions Cq

3

with O
q

= q̄�q, q 2 {u, d}, and replace
the propagator connecting the nucleon source and O

q

with a first- or second-derivative propagator. By comparing the
contractions, we find the relations

C⌃r!N

3

=
1p
2
Cd

3

,

C⇤r!N

3

=
1p
6

�
2Cu

3

� Cd

3

�
,

(42)

where the r propagator is substituted into the evaluation of the right-hand-side expressions as described above. A
similar consideration was made in Ref. [30]; these relations could also be derived from SU(3) symmetry.

When forming ratios, we must use the appropriate two-point functions: taking Eq. (16) with the three-point function
CX!N

3

, all nucleon two-point functions that take the initial-state momentum ~p must be replaced by the two-point
function for state X. Once we have formed the ratios for the X ! N matrix elements, we can invert the relations in
Eq. (42) to obtain the nucleon matrix elements of O

u

and O
d

.

Implementation on a lattice: compute nucleon correlators 
with "sequential" propagators

7
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FIG. 1: Left: Nucleon two-point (top) and three-point (bottom) functions . The solid black circles represent the nucleon source and

sink, the black square in the three-point function represents the current insertion. The red line refers to the propagator which we use

for computing the momentum derivatives of the correlators which carry therefore the derivative vertex (solid red circle). The right panel

shows the representation of the derivative vertex for the simplified case of unsmeared propagators.

this symmetry group there is a baryon octet that contains the ordinary (untwisted) nucleons, as well as states with
one or two r quarks. We are interested in the states with one r quark, and we find that there are two kinds: an isospin
singlet and a triplet, the ⇤

r

and ⌃
r

, respectively. This was previously discussed in Ref. [30].

For the states with quark content udr we use interpolating operators

�
⌃r =

1p
2

([rud] + [rdu]) ,

�
⇤r =

1p
6

(2[udr] � [rud] � [dru]) ,

(40)

where [pqr] ⌘ ✏abc(p̃T
a

C�
5

1+�

0

2

q̃
b

)r̃
c

. When contracted with the projector 1+�

0

2

, the flavor-singlet operator, 1/
p

3([udr]+

[rud] + [dru]), vanishes and the ⇤
r

operator can be simplified to �
⇤r =

q
3

2

[udr]. We consider three-point functions

for the transition from a state with one r quark to an ordinary nucleon:

CX!N

3

(~p, ~p 0, ⌧, T ) =
X

~x,~y

e�i~p

0
(~x�~y) Tr [�

pol

h�(~x, T )O(~y, ⌧)�̄
X

(0)i] , (41)

where O = ū�r is a quark bilinear and X is ⌃
r

or ⇤
r

. The initial momentum ~p is implied in the initial state due
to the twisted boundary conditions for the r quark. The ground-state contribution is proportional to the matrix
element hN(~p 0)|O|X(~p)i for which we will evaluate @

@~p

at ~p 0 = ~p = 0. In practice, we simply use our already coded

expressions for the connected diagrams in the nucleon three-point functions Cq

3

with O
q

= q̄�q, q 2 {u, d}, and replace
the propagator connecting the nucleon source and O

q

with a first- or second-derivative propagator. By comparing the
contractions, we find the relations

C⌃r!N

3

=
1p
2
Cd

3

,

C⇤r!N

3

=
1p
6

�
2Cu

3

� Cd

3

�
,

(42)

where the r propagator is substituted into the evaluation of the right-hand-side expressions as described above. A
similar consideration was made in Ref. [30]; these relations could also be derived from SU(3) symmetry.

When forming ratios, we must use the appropriate two-point functions: taking Eq. (16) with the three-point function
CX!N

3

, all nucleon two-point functions that take the initial-state momentum ~p must be replaced by the two-point
function for state X. Once we have formed the ratios for the X ! N matrix elements, we can invert the relations in
Eq. (42) to obtain the nucleon matrix elements of O

u

and O
d

.

C(n)
2 =

C(n)
3 =
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Expansion in Lattice Momentum: Matrix Elements

Estimator for matrix elements

3

In this work, we are considering the isovector electromagnetic Sachs form factors which parametrize the matrix
elements of the u � d flavor combination between proton states and, neglecting the isospin breaking e↵ects, are
equivalent to the di↵erence between the form factors of the electromagnetic current V µ

em

= 2

3

ū�µu � 1

3

d̄�µd in a
proton and in a neutron, Gp,n

E,M

(Q2),

Gv

E,M

(Q2) = Gp

E,M

(Q2) � Gn

E,M

(Q2) = Gu

E,M

(Q2) � Gd

E,M

(Q2) ⌘ Gu�d

E,M

(Q2). (9)

The isovector axial form factors Gv

A,P

(Q2) are defined in a similar way.

III. COMPUTATION OF MATRIX ELEMENTS USING THE TRADITIONAL METHOD

For determining the nucleon matrix elements in lattice QCD, we compute the nucleon two-point and three-point
functions,

C
2

(~p, t) =
X

~x

e�i~p~x

X

↵�

[(�
pol

)
↵�

h�
�

(~x, t)�̄
↵

(0)i] , (10)

C
Oq,µ

X
3

(~p, ~p 0, ⌧, T ) =
X

~x,~y

e�i~p

0
~xei(~p

0�~p)~y

X

↵�

[(�
pol

)
↵�

h�
�

(~x, T )Oq,µ

X

(~y, ⌧)�̄
↵

(0)i] . (11)

In this section, we use Minkowski-space gamma matrices. Above, � = ✏abc(ũT

a

C�
5

1+�

0

2

d̃
b

)ũ
c

is a proton interpolating
operator constructed using smeared quark fields q̃ and �

pol

= 1

2

(1 + �
0

)(1 + �
3

�
5

) is a spin and parity projection
matrix. The three-point correlators have contributions from both connected and disconnected quark contractions, but
we compute only the connected part since for the isovector flavor combination the disconnected contributions cancel
out.

We will be tracing the correlators with �
pol

which contains the projector (1+ �
0

)/2 so that we can e↵ectively write
the overlap of the interpolating operator with the ground-state proton as h⌦|�

↵

(0)|~p, �i = Z(~p)u(~p, �)
↵

[13, 14]. At
large time separations we obtain

C
2

(~p, t) =
Z(~p)2e�E(~p)t

2E(~p)
Tr[�

pol

(m + /p)]
⇣
1 + O(e��E

10

(~p)t)
⌘

, (12)

C
Oq,µ

X
3

(~p, ~p 0, ⌧, T ) =
Z(~p)Z(~p 0)e�E(~p)⌧�E(~p

0
)(T�⌧)

4E(~p 0)E(~p)

X

�,�

0

ū(~p, �)�
pol

u(~p 0, �0)hp0, �0|Oq,µ

X

|p, �i (13)

⇥
⇣
1 + O(e��E

10

(~p)⌧ ) + O(e��E

10

(~p

0
)(T�⌧))

⌘
,

where �E
10

(~p) is the energy gap between the ground and the lowest excited state with momentum ~p. By taking ⌧
and T � ⌧ to be large, unwanted contributions from excited states can be eliminated. In order to compute C

3

, we use
sequential propagators through the sink [15]. This has the advantage of allowing for any operator to be inserted at any
time using a fixed set of quark propagators, but new backward propagators must be computed for each source-sink
separation T . Increasing T suppresses excited-state contamination, but it also increases the noise; the signal-to-noise
ratio is expected to decay asymptotically as e�(E� 3

2

m⇡)T [16].
In order to cancel the overlap factors and the dependence on Euclidean time, we define the normalization ratio,

RX

N

, and the asymmetry ratio, R
S

as

RX

N

=
C

Oq,µ
X

3

(~p, ~p 0, ⌧, T )p
C

2

(~p, T )C
2

(~p 0, T )
, (14)

R
S

=

s
C

2

(~p, T � ⌧)C
2

(~p 0, ⌧)

C
2

(~p 0, T � ⌧)C
2

(~p, ⌧)
, (15)

and compute their product

Rq,µ

X

(~p, ~p 0, ⌧, T ) = RX

N

R
S

= Mq,µ

X

(~p, ~p 0) + O(e��E

10

(~p)⌧ ) + O(e��E

10

(~p

0
)(T�⌧)) + O(e��EminT ), (16)
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In this work, we are considering the isovector electromagnetic Sachs form factors which parametrize the matrix
elements of the u � d flavor combination between proton states and, neglecting the isospin breaking e↵ects, are
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(~p) is the energy gap between the ground and the lowest excited state with momentum ~p. By taking ⌧
and T � ⌧ to be large, unwanted contributions from excited states can be eliminated. In order to compute C

3

, we use
sequential propagators through the sink [15]. This has the advantage of allowing for any operator to be inserted at any
time using a fixed set of quark propagators, but new backward propagators must be computed for each source-sink
separation T . Increasing T suppresses excited-state contamination, but it also increases the noise; the signal-to-noise
ratio is expected to decay asymptotically as e�(E� 3
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m⇡)T [16].
In order to cancel the overlap factors and the dependence on Euclidean time, we define the normalization ratio,
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In this work, we are considering the isovector electromagnetic Sachs form factors which parametrize the matrix
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The isovector axial form factors Gv

A,P

(Q2) are defined in a similar way.

III. COMPUTATION OF MATRIX ELEMENTS USING THE TRADITIONAL METHOD

For determining the nucleon matrix elements in lattice QCD, we compute the nucleon two-point and three-point
functions,
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as a function of ⌧ 2 [0, T ] with fixed T . Above,
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and �E
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= min{�E
10

(~p), �E
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(~p 0)}.
The ratio in Eq. (16) gives an estimate of the nucleon matrix element hp0, �0|Oq,µ

X

|p, �i and produces at large T
a plateau with “tails” at both ends caused by excited states. In practice, for each fixed T , we average over the
central two or three points near ⌧ = T/2, which allows for matrix elements to be computed with errors that decay
asymptotically as e��E

min

T/2.
Improved asymptotic behavior of excited-state contributions can be achieved by using the summation method [17, 18]

which requires performing the calculations with multiple source-sink separations. Taking the sums of ratios for each
T yields
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where we choose ⌧
0

= 1 and c is an unknown constant. The matrix element can then be extracted from the slope of a
linear fit to Sq,µ

X

(~p, ~p 0, T ) at several values of T . The leading excited-state contaminations decay now as Te��EminT .
For calculating the form factors — G

E

(Q2), G
M

(Q2) for the case of the vector current and G
A

(Q2), G
P

(Q2) for
the case of the axial current — we construct a system of equations parameterizing the corresponding set of matrix
elements at each fixed value of Q2 [19]. We combine equivalent matrix elements to improve the condition number [20].
We find the solution of the resulting overdetermined system of equations by performing a linear fit. This approach
makes use of all available matrix elements in order to minimize the statistical uncertainty in the resulting form factors.

The charge and axial radii can be extracted from the slopes of the electric and axial form factors at Q2 = 0,
respectively. For that we need to fit the Q2-dependence of each form factor. In order to avoid the model dependence
included in the commonly used fit ansatzes, such as a dipole, we use the model-independent z expansion [21–24],
where each form factor can be described by a convergent Taylor series in z
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maxX

k

a
k

zk, z =

p
t
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+ Q2 � p
t
cutp

t
cut

+ Q2 +
p

t
cut

, (19)

which conformally maps the complex domain of analyticity in Q2 to |z| < 1. We fix a
0

= 1 for fitting G
E

(Q2) since
G

E

(0) = 1. We use the particle production threshold t
cut

= (2m
⇡

)2 for the vector case and t
cut

= (3m
⇡

)2 for the
axial case. We apply z-expansion fits following the approach of Ref. [25]. The intercept and slope of the form factor
at Q2 = 0 can be obtained from the first two coe�cients, a

0

and a
1

. We impose Gaussian priors on the remaining
coe�cients centered at zero with width equal to 5max{|a

0

|, |a
1

|}. We truncate the series with k
max

= 5 after verifying
that using a larger k

max

produces identical fit results in our probed range of Q2.
Furthermore, the isovector G

P

form factor has an isolated pole at the pion mass below the particle production
threshold. We thus remove this pole before fitting and perform the z-expansion fit to (Q2 + m2

⇡

)G
P

(Q2).
We perform correlated fits by minimizing

�2
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i
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!
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) �
X

k

0

a
k

0z(Q2

j

)k
0

!
+
X

k>1

a2

k

w2

, (20)

with respect to {a
k

}, where S is an estimator of the covariance matrix and the last term augments the chi-squared
with the Gaussian priors. For choosing the estimator of the covariance matrix, we use S = (1 � �)C + �C

diag

, where
� = 0.1, C is the bootstrap estimate of the covariance matrix and C

diag

is the diagonal part of C.

IV. DERIVATIVE METHOD

In this section, we explain the details of our approach for extracting the nucleon charge radius directly at Q2 =
0. We begin with reviewing the Rome method for computing the momentum derivatives of quark propagators in
Subsection IV A. The flavor structure of the correlators constructed from the momentum derivatives of the quark
propagators is investigated in IV B. In Subsection IV C, we show how to use the momentum derivatives of the quark
propagator in order to obtain the first- and second-order derivatives of the nucleon two- and three-point functions with

9

We take the derivative with respect to k and obtain:

(R
X

)0(k) =
Tr

⇥
�
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�
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(k)(m + E�0 � k�j) + F
X

(k)(E0�0 � �j)
�⇤
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2E(E + m)
(48)
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F
X

(k)(m + E�0 � k�j)
⇤
(2E + m)E0

4
p

2[E(E + m)]3/2
.

(R
X

)00(k) can be calculated in a similar way. We use the continuum dispersion relation E(k) =
p

m2 + k2, which
implies Q2 = 2m

p
m2 + k2 � 2m2, and find that at k = 0, the second derivative is needed to obtain the slope of F

1

:

dF
1

dk

���
k=0

=
dQ2

dk

���
k=0

dF
1

dQ2

���
Q
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dk2

���
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���
Q

2
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. (49)

The same applies for F
2

, G
A

, and G
P

. Furthermore, we have at k = 0 :

E(0) = m, E0(0) = 0, E00(0) = 1/m, (50)
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, µ = j
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, µ = 0

0, µ 6= 0
. (53)

For the renormalized vector current, we use G
E

(0) = 1 and find nonzero results for the following combinations of j
and µ:
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= � i
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G
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and for the axial current,
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= � 6

G
A

(0)

dG
A

dQ2

���
Q

2

=0

. (59)

From Eq. (54) and Eq. (55), we find the following relations for the nucleon magnetic moment µ = G
M

(0) and squared
charge radius r2

E

:

µ = 2i m (R2

V

)0, (60)

r2
E

= � 3

4m2

� 3
(R0
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)00

R0

V

, (61)
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converges to the  
ground state with T→∞



 LQCD and the Proton Radius CIPANP 2018, Palm Springs, CA

    

Sergey N. Syritsyn, for LHP collab

Isovector Electric Form Factor 13

Summation
standard method
z-expansion fit
Derivative method
Kelly

FIG. 5: Isovector electric (top row) and magnetic (bottom row) form factors using both the ratio method with T = 10 a (left column) and

the summation method (right column). The blue points show results from the standard method and the red bands show a z-expansion
fit to those points. The green band (top) and point (bottom) show the slope and value of the respective form factor at Q2

= 0, computed

using the momentum derivative method. The black curves result from a phenomenological fit to experimental data by Kelly [36].

µ

v (r2
E

)v [fm]2 G

P

(0) r

2
A

[fm]2

T/a = 10 Summation T/a = 10 Summation T/a = 10 Summation T/a = 10 Summation

Traditional method 3.899(38) 4.75(15) 0.608(15) 0.787(87) 75(1) 137(7) 0.249(12) 0.295(68)

Derivative method 3.898(54) 4.46(33) 0.603(29) 0.753(273) 69(1) 137(15) 0.288(61) �0.120(492)

TABLE II: Numerical results for the four di↵erent nucleon observables at Q2
= 0, computed with the traditional method (via z expansion

fit to the form factor shape) and with the derivative method.

A comparison between our results using the derivative method and the traditional method for both r2
A

and Gv

P

(0)
is shown in Fig. 7, top and bottom row, respectively. Shown are results from both the ratio method with T/a = 10
and the summation method. Both Gv

A

(Q2) and Gv

P

(Q2) increase when going to the summation method indicating the
significant excited-state contributions for the ratio method with T/a = 10. The extracted value for the axial radius
using the derivative method has a much larger statistical error compared to its value from the traditional approach.
For Gv

P

in Fig. 7, before fitting we remove the pion pole that is present in the form factor, and then restore it in the
final fit curve as was discussed in Sec. III. At T/a = 10, there is a significant disagreement between G

P

(0) from the
traditional and the derivative approaches which is likely due to excited-state e↵ects. The value for Gv

P

(0) using the
summation method and the derivative approach seems to be in good agreement with its value from the traditional
approach despite the large extrapolation caused by the inclusion of the pion pole in the fit. However, Gv

P

(0) obtained
from the derivative method has statistical uncertainties roughly twice as large as the traditional approach. Our results
for the axial form factors are reported in Table II.
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Charge Radius from FF. at Zero Momentum

strong contributions for excited states

quasielastic neutrino scattering, Q2 = −q2 ≥ 0. As discussed in the Introduction, an expansion
at q2 = 0 defines an “axial mass parameter” mA, via

FA(q
2) = FA(0)

[

1 +
2

m2
A

q2 + . . .

]

=⇒ mA ≡

√

2FA(0)
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. (5)

Equivalently, we may define an “axial radius” rA, via

FA(q
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r2A
6
q2 + . . .

]

=⇒ rA ≡

√

6F ′
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FA(0)
. (6)

The factors appearing in (5) and (6) are purely conventional, motivated by the dipole ansatz
(2), and by the analogous charge-radius definition for the vector form factors. Asymptotically,
perturbative QCD predicts [10, 11] a ∼ 1/Q4 scaling, up to logarithms, for the axial-vector
form factor. However, the region Q2 ! 1GeV2 is far from asymptotic, and the functional
dependence of FA(q2) remains poorly constrained at accessible neutrino energies.

2.2 Analyticity
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t z

Figure 1: Conformal mapping of the cut plane to the unit circle.

We proceed along lines similar to the vector form factor analysis in [9]. Recall the dispersion
relation for the form factor,

FA(t) =
1

π

∫ ∞

tcut

dt′
ImFA(t′ + i0)

t′ − t
, (7)

where t ≡ q2 and the integral starts at the three-pion cut, tcut = 9m2
π. We can make use

of this model-independent knowledge by noticing that the separation between the singular
region, t ≥ tcut, and the kinematically allowed physical region, t ≤ 0, implies the existence of
a small expansion parameter, |z| < 1. As illustrated in Fig. 1, by a standard transformation,
we map the domain of analyticity onto the unit circle in such a way that the physical region
is mapped onto an interval:

z(t, tcut, t0) =

√
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√
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tcut − t+
√
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, (8)
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the summation method (right column). The blue points show results from the standard method and the red bands show a z-expansion
fit to those points. The green band (top) and point (bottom) show the slope and value of the respective form factor at Q2

= 0, computed

using the momentum derivative method. The black curves result from a phenomenological fit to experimental data by Kelly [36].
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fit to the form factor shape) and with the derivative method.

A comparison between our results using the derivative method and the traditional method for both r2
A

and Gv

P

(0)
is shown in Fig. 7, top and bottom row, respectively. Shown are results from both the ratio method with T/a = 10
and the summation method. Both Gv

A

(Q2) and Gv

P

(Q2) increase when going to the summation method indicating the
significant excited-state contributions for the ratio method with T/a = 10. The extracted value for the axial radius
using the derivative method has a much larger statistical error compared to its value from the traditional approach.
For Gv

P

in Fig. 7, before fitting we remove the pion pole that is present in the form factor, and then restore it in the
final fit curve as was discussed in Sec. III. At T/a = 10, there is a significant disagreement between G

P

(0) from the
traditional and the derivative approaches which is likely due to excited-state e↵ects. The value for Gv

P

(0) using the
summation method and the derivative approach seems to be in good agreement with its value from the traditional
approach despite the large extrapolation caused by the inclusion of the pion pole in the fit. However, Gv

P

(0) obtained
from the derivative method has statistical uncertainties roughly twice as large as the traditional approach. Our results
for the axial form factors are reported in Table II.
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a z-expansion fit to those points. The green band (top) and point (bottom) show the slope and value of the respective form factor at
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= 0, computed using the momentum derivative method.
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Form Factors Vanishing in Forward Nucleon M.E.

Q2 [GeV2]

mπ =135 MeV  a=0.093 fm 644 (BMWc) 
[N.Hasan et al, PRD97: 034504 (1711.11385)]

Sachs magnetic form factor

Induced pseudoscalar form factors
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We take the derivative with respect to k and obtain:

(R
X

)0(k) =
Tr

⇥
�
pol

�
F 0
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F
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⇤
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4
p

2[E(E + m)]3/2
.

(R
X

)00(k) can be calculated in a similar way. We use the continuum dispersion relation E(k) =
p

m2 + k2, which
implies Q2 = 2m

p
m2 + k2 � 2m2, and find that at k = 0, the second derivative is needed to obtain the slope of F

1

:
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. (49)

The same applies for F
2

, G
A

, and G
P

. Furthermore, we have at k = 0 :

E(0) = m, E0(0) = 0, E00(0) = 1/m, (50)

F
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, (51)
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For the renormalized vector current, we use G
E

(0) = 1 and find nonzero results for the following combinations of j
and µ:
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and for the axial current,
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with @
j

= @

@p

j and

r2
E

= � 6

G
E

(0)

dG
E

dQ2

���
Q

2

=0

, (58)

r2
A

= � 6

G
A

(0)

dG
A

dQ2

���
Q

2

=0

. (59)

From Eq. (54) and Eq. (55), we find the following relations for the nucleon magnetic moment µ = G
M

(0) and squared
charge radius r2

E

:

µ = 2i m (R2
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10

where we average over equivalent vector components and directions:
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The squared axial radius r2
A

and G
P

(0) can be evaluated using Eq. (56) and Eq. (57) as follows:
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To estimate the excited-state e↵ects contributing to the momentum derivatives of the ratio, we take the momentum
derivatives of the leading contributions in Eq. (16), which leads to
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Likewise, the expected excited-state e↵ects in applying the summation method to the momentum derivatives of ratios
are given by
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V. LATTICE SETUP

We perform lattice QCD calculations using a tree-level Symanzik-improved gauge action [31, 32] and 2+1 flavors of
tree-level improved Wilson-clover quarks, which couple to the gauge links via two levels of HEX smearing. We carry
out the calculations at the physical pion mass m

⇡

= 135 MeV, with lattice spacing a = 0.093 fm, and a large volume
L3

s

⇥ L
t

= 644 satisfying m
⇡

L = 4. We are measuring the isovector combination u � d of the three-point functions,
where the disconnected contributions cancel out. We renormalize the axial current using Z

A

from [33] and the vector
current by imposing Gv

E

(0) = 1. Furthermore, we use three source-sink separations T/a 2 {10, 13, 16} ranging from
0.9 fm to ⇠ 1.5 fm, and we are using the summation method for removing contributions from excited states. We
apply our analysis on 442 gauge configurations, using all-mode-averaging [34, 35] with 64 sources with approximate
propagators and one source for bias correction per gauge configuration. For each source position we place nucleon
sinks in both the forward and backward directions to double statistics and obtain a total of 56576 samples. We
computed the momentum derivatives of the correlators only in the x direction on a subset of the gauge configurations
(75 configurations) and in the x, y, and z directions on the rest (367 configurations).

VI. RESULTS

A. Derivatives of the two-point functions

We begin by testing our method applied to the simpler case of two-point functions. From Eq. (12), the ground-state
contribution is

C
2

(~p, t) =
Z(~p)2 (E(~p) + m)

E(~p)
e�E(~p)t. (67)

The momentum derivatives of C
2

(~p, t) can then be evaluated at ~p = 0 and we obtain:

C
2

(0, t) = 2Z2e�mt, (68)

C 0
2

(0, t) = 4ZZ 0e�mt, (69)

C 00
2

(0, t) =
1

m2

⇥�(1 + 2mt)Z2 + 4m2(Z 0)2 + 4m2ZZ 00⇤ e�mt, (70)

hp0|Aµ|pi = ū0⇥GA�µ�5 +GP
qµ�5
mN

⇤
u

hp0|Vµ|pi = ū0⇥F1�µ + F2
�µ⌫qµ

2mN

⇤
u
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Summary

Multiple lattice results for nucleon form factors at the physical point 
Chiral extrapolation in mπ no longer required 

Large systematic bias seen by all lattice groups 
Overestimate GEv(Q2=0.4 GeV2) by 15-20% 
Underestimate isovector radius by 20-25% 

Precision for charge radius is insufficient for any conclusions 
Both statistical and systematic uncertainty 

Multiple potential sources of systematic uncertainty to explore 
Excited state effects 
Finite volume effects 
Zero-momentum extrapolation 

New promising methods for nucleon structure at zero momentum 
Charge radius 
Form factors vanishing from forward matrix elements


