Lattice QCD and the Proton Radius

Nesreen Hasan, Jeremy Green, Stefan Meinel, Michael Engelhardt, Stefan Krieg, John Negele, Andrew Pochinsky, and Sergey Syritsyn* (LHP collaboration)

[1711.11385; Phys.Rev.D97.034504]

13th Conference on the Intersections of Particle and Nuclear Physics Palm Springs, CA, May 29–Jun 3, 2018

Outline

Nucleon form factors and radii on a lattice

Results from the physical point

Form factors at zero momentum

Basics of Hadron Structure in Lattice QCD

Electric Form Factor

Sergey N. Syritsyn, for LHP collab

CIPANP 2018, Palm Springs, CA

Charge Radius at/near the Physical Pion mass

strong contributions from excited states

Smaller Momenta: Twisted Boundary Conditions

Quantized lattice momenta for PBC $\psi(x+L) = \psi(L)$ $p_{\mu} = \frac{2\pi}{L_{\mu}}n_{\mu}$ with minimally acceptable $m_{\pi}L \gtrsim 4$ $p_{\min} \lesssim \frac{\pi}{2}m_{\pi} \approx 0.21 \,\text{GeV}$ $Q_{\min}^2 \approx 0.05 \,\text{GeV}^2$

• Twisted BC
$$\psi(x + \hat{L}_{\mu}) = e^{i\theta_{\mu}}\psi(x)$$

arbitrary momenta $p_{\mu} = \frac{2\pi}{L_{\mu}}n_{\mu} + \frac{\theta_{\mu}}{L_{\mu}}$

baryons with new twisted valence "flavor" r $\chi_{\Sigma_r} = \frac{1}{\sqrt{2}} \left([rud] + [rdu] \right),$ $\chi_{\Lambda_r} = \frac{1}{\sqrt{6}} \left(2[udr] - [rud] - [dru] \right),$

no sea twisted flavor \Rightarrow additional finite volume effects [F.J.Jiang, B.Tiburzi (0810.1495)]

for $C'_{2,3}$

 Γ_V

Expansion in Lattice Momentum: Correlators

Expansion in Lattice Momentum: Matrix Elements

Estimator for matrix elements

$$\begin{split} R_N^X &= \frac{C_3^{\mathscr{O}_X^{q,\mu}}(\vec{p},\vec{p}',\tau,T)}{\sqrt{C_2(\vec{p},T)C_2(\vec{p}',T)}} \qquad R_S = \sqrt{\frac{C_2(\vec{p},T-\tau)C_2(\vec{p}',\tau)}{C_2(\vec{p}',T-\tau)C_2(\vec{p},\tau)}} \\ R_X^{q,\mu}(\vec{p},\vec{p}',\tau,T) &= R_N^X R_S = M_X^{q,\mu}(\vec{p},\vec{p}') + O(e^{-\Delta E_{10}(\vec{p})\tau}) + O(e^{-\Delta E_{10}(\vec{p}')(T-\tau)}) + O(e^{-\Delta E_{min}T}) \\ \downarrow \\ \frac{\sum_{\lambda,\lambda'} \bar{u}(\vec{p},\lambda)\Gamma_{\text{pol}}u(\vec{p}',\lambda')\langle p',\lambda'|\mathscr{O}_X^{q,\mu}|p,\lambda\rangle}{4\sqrt{E(\vec{p})E(\vec{p}')(E(\vec{p})+m)(E(\vec{p}')+m)}} \qquad \text{converges to the ground state with } T \rightarrow \infty \end{split}$$

Vector current insertion

Isovector Electric Form Factor

comparison of G_{Ev} slope at $Q_2=0$

- z-expansion fit vs.
- twist-derivative method

 m_{π} =135 MeV *a*=0.093 fm 64⁴ (BMWc) [N.Hasan et al, PRD97: 034504 (1711.11385)]

Charge Radius from FF. at Zero Momentum

strong contributions for excited states

Derivatives wrt. Initial and Final Momenta

Sergey N. Syritsyn, for LHP collab

CIPANP 2018, Palm Springs, CA

LQCD and the Proton Radius

Form Factors Vanishing in Forward Nucleon M.E.

Sachs magnetic form factor

$$\langle p'|V_{\mu}|p\rangle = \bar{u}' \left[F_1 \gamma_{\mu} + F_2 \frac{\sigma_{\mu\nu} q^{\mu}}{2m_N}\right] u$$

$$G_M = F_1(Q^2) + F_2(Q^2)$$

$$\partial_1 R_V^2 = -\frac{i}{2m} G_M(0)$$

• Induced pseudoscalar form factors $\langle p'|A_{\mu}|p\rangle = \bar{u}' \Big[G_A \gamma_{\mu} \gamma_5 + G_P \frac{q_{\mu} \gamma_5}{m_N} \Big] u$ $G_P(0) = m^2 \left(\partial_1^2 R_A^3 + \partial_2^2 R_A^3 - 2 \partial_3^2 R_A^3 \right)$

 m_{π} =135 MeV *a*=0.093 fm 64⁴ (BMWc) [N.Hasan et al, PRD97: 034504 (1711.11385)]

CIPANP 2018, Palm Springs, CA

Summary

- Multiple lattice results for nucleon form factors at the physical point Chiral extrapolation in m_{π} no longer required
- Large systematic bias seen by all lattice groups Overestimate G_{Ev}(Q²=0.4 GeV²) by 15-20% Underestimate isovector radius by 20-25%
- Precision for charge radius is insufficient for any conclusions Both statistical and systematic uncertainty
- Multiple potential sources of systematic uncertainty to explore Excited state effects Finite volume effects Zero-momentum extrapolation
- New promising methods for nucleon structure at zero momentum Charge radius Form factors vanishing from forward matrix elements