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Why the deuteron?

The deuteron is a spin-1 system: has more structure than
the proton or neutron.

The deuteron has an electric quadrupole moment—and a
huge one, 0.286 fm2.

The deuteron also has a tensor polarization, which is
sensitive to exotic components like hidden color.

JLab experiment E12-13-011 will measure tensor-polarized
DIS of the deuteron.
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Deuteron polarization relevant to EIC design!
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What are GPDs?
Generalized parton distributions (GPDs) are defined using the same operators (light cone
correlators) as PDFs.

A familiar example: vector quark correlator for the nucleon.
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∫
dz

2π
e−iP ·nzx〈p′|q̄

(nz
2

)
/nq
(
−nz

2

)
|p〉 = ū(p′)

[
/nHN (x, ξ, t) +

iσn∆

2mN
EN (x, ξ, t)

]
u(p)

...in the light cone gauge. Other gauges require a Wilson line.

GPDs are defined using different momenta in the initial and final states.

The limit p′ → p gives us traditional PDFs.

x + ξ x − ξ

1 + ξ 1 − ξ

x is the average light cone momentum
fraction between initial and final states.

2ξ is the light cone momentum fraction lost
by the target.

t is the invariant momentum transfer.
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Going up in spin

The deuteron (as a spin-1 system) has more GPDs than the proton.

A spin-0 system (π, 4He) has one vector GPD.

A spin-12 system (p, n, 3H, 3He) has two vector GPDs.

A spin-1 system (deuteron, ρ) has five vector GPDs.

This increase in the number of GPDs is analogous to the increasing number of form
factors, or of DIS structure functions, as spin increases.

〈/n〉 = −(ε · ε′∗)H1+
(n · ε′∗)(∆ · ε)− (n · ε)(∆ · ε′∗)

2P · n H2+
(ε ·∆)(ε′∗ ·∆)

2M2
D

H3

−(n · ε)(∆ · ε′∗) + (n · ε′∗)(∆ · ε)
2P · n H4+

[
(n · ε)(n · ε′∗)M2

D

(P · n)2
+

1

3
(ε · ε′∗)

]
H5

This big equation tells us how the five vector GPDs are defined.
Helpful mnemonic: H1-H3 are defined by same Lorentz structures as EM form factors F1-F3.
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Polynomiality rules for the nucleon
Nucleon GPDs are known to obey polynomiality sum rules [X. Ji, J.Phys. G24 (1998)
1181]: ∫ 1

−1
xsHN (x, ξ, t)dx =

s∑
l=0
2|l

As+1,l(t)(2ξ)
l+mod(s, 2)CN (t)(2ξ)s+1

∫ 1

−1
xsEN (x, ξ, t)dx =

s∑
l=0
2|l

Bs+1,l(t)(2ξ)
l−mod(s, 2)CN (t)(2ξ)s+1

A, B, and C are called generalized form factors.

These rules are a result of Lorentz covariance.

They are violated for models that break covariance (e.g., models with Fock
space truncations or which use non-relativistic nuclear wave functions).

Spin-1 systems will have polynomiality rules too (due to Lorentz symmetry).
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Polynomiality sum rules for the deuteron
I have derived the following sum rules for spin-1 systems (with x ∈ [−1, 1] convention):∫ 1

−1
xsH1(x, ξ, t)dx =

s∑
l=0
2|l

As+1,l(t)(2ξ)
l+mod(s, 2)Fs+1(t)(2ξ)

s+1

∫ 1

−1
xsH2(x, ξ, t)dx =

s∑
l=0
2|l

Bs+1,l(t)(2ξ)
l

∫ 1

−1
xsH3(x, ξ, t)dx =

s∑
l=0
2|l

Cs+1,l(t)(2ξ)
l+mod(s, 2)Gs+1(t)(2ξ)

s+1

∫ 1

−1
xsH4(x, ξ, t)dx =

s∑
l=1
2-l

Ds+1,l(t)(2ξ)
l

∫ 1

−1
xsH5(x, ξ, t)dx =

s−1∑
l=0
2|l

Es+1,l+1(t)(2ξ)
l

Only H1 and H3 (related to electric distribution, not magnetic) have the (2ξ)s+1 term. Two D-terms???
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Special cases of generalized form factors
The first Mellin moments (s = 0) give electromagnetic form factors:∫ 1

−1

H1(x, ξ, t)dx = F1(t)

∫ 1

−1

H2(x, ξ, t)dx = F2(t)∫ 1

−1

H3(x, ξ, t)dx = F3(t)

∫ 1

−1

H4(x, ξ, t)dx =

∫ 1

−1

H5(x, ξ, t)dx = 0

The second Mellin moments (s = 1) give gravitational form factors:∫ 1

−1

xH1(x, ξ, t)dx = G1(t)+(2ξ)2G3(t)

∫ 1

−1

xH2(x, ξ, t)dx = G5(t)∫ 1

−1

xH3(x, ξ, t)dx = G2(t)+(2ξ)2G4(t)∫ 1

−1

xH4(x, ξ, t)dx = (2ξ)G6(t)

∫ 1

−1

xH5(x, ξ, t)dx = G7(t)

A. Freese (ANL) Deuteron GPDs June 2, 2018 7 / 24



Information contained in GFFs
The GFFs contain extra information that electromagnetic FFs don’t.

Can construct a Newtonian form factor (monopole gravitational) and define a
gravitational radius:

GN (t) =

(
1 +

2

3
τ

)
G1(t)− 2

3
τG5(t) +

2

3
τ(1 + τ)G2(t)

where τ = −t/(4M2
D).

〈r2
G〉 = 6

d

dt
[GN (t)]

Taneja et al. (Phys.Rev. D86 (2012) 036008) tell us that

J(t) =
1

2
G5(t)

To unambiguously extract this information requires GPD calculations to obey polynomiality.
Lorentz covariance in GPD calculations is a necessity.
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Convolution formalism

First step (baseline) in nuclear GPDs: establish an impulse approximation convolution formalism.
This is ostensibly straightforward:

Get a model for the nucleon GPDs HN and EN .
Compute the matrix element

〈p′, λ′|
[
/nHN +

iσn∆

2mN
EN

]
|p, λ〉

assuming pointlike, on-shell nucleons.
(The factors HN and EN fold in the non-pointlike structure.)

An ambiguity arises: identities like Gordon decomposition that are true for on-shell nucleons
will lead to different results for kinematically off-shell nucleons.

This turns out to matter for the nucleon D-terms.
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The D-term and Gordon decomposition

In models such as [Goeke et al., Prog. Part. Nucl. Phys. 47 (2001)], the nucleon GPD is broken
into a double distribution and a D-term:

HN (x, ξ, t) = HDD(x, ξ, t)+D

(
x

ξ
, t

)
EN (x, ξ, t) = EDD(x, ξ, t)−D

(
x

ξ
, t

)

The D-term here contributes to the (2ξ)s+1 GFF in the polynomiality sum rules.

The same D-term enters both HN and EN with opposite sign.

This is due to Lorentz invariance. [X. Ji, J.Phys. G24 (1998) 1181]

Using Gordon decomposition, we can write:

ū(p′, σ′)

[
/nHN +

iσn∆

2mN
EN

]
u(p, σ) = ū(p′, σ′)

[
/nHDD +

iσn∆

2mN
EDD +

p · n
mN

DN

]
u(p, σ)

for on-shell spinors.
We must decide between the LHS and RHS for the “unmodified” deuteron GPD.
(I’ve chosen the RHS since it gives us polynomiality.)
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The master convolution formula
Evaluating the matrix element

〈p′, λ′|
[
/nHDD +

iσn∆

2mN
EDD +

p · n
mN

DN

]
|p, λ〉

gives a master convolution formula:

Hi(x, ξ, t) =

∫
|y|>|x|

dy

y

[
hi(y, ξ, t)HDD

(
x

y
,
ξ

y
, t

)
+ ei(y, ξ, t)EDD

(
x

y
,
ξ

y
, t

)
+ ydi

(
y

ξ
, t

)
DN

(
x

ξ
, t

)]

hi, ei, and di describe how the nucleons are distributed in the nucleus, using GPD language.
Call them generalized nucleon distributions (GNDs).

By construction, HDD, EDD, and DN already obey polynomiality.

We can prove that when the GNDs obey polynomiality sum rules, so do the deuteron GPDs.

The only ingredient needed to ensure the GNDs observe polynomiality is a
Lorentz-covariant model of nuclear structure.
Taking Mellin moments of the master convolution formula will give discrete convolution
relations for the GFFs. Don’t have time to discuss these.
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Motivation for a contact model

For computing the GPDs themselves, covariance is of the utmost importance.

Can be difficult to maintain covariance while solving a bound state equation for
fermions.

Impressive headway is being made for realistic BSE kernels by W. de Paula, et al.
[PRD94 (2016), 071901], and Carbonell and Karmanov [EPJA46 (2010), 387].
However we want a simpler approach that can be immediately generalized to 3+ body
systems.

Covariantly solving a four-Fermi contact interaction is tractable.

Success of the Nambu-Jona-Lasinio (NJL) model suggests this approach has promise.

The skeptic may ask: what about the deuteron’s D-wave?
What about the deuteron’s huge quadrupole moment?

The magic of relativity will produce these things, even in a contact interaction model.
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Lagrangian

Construct most general possible NN Lagrangian that:

Has four-fermi contact interactions.
Has no derivatives in interaction terms.
Obeys SU(2)V × SU(2)A isospin symmetry.

Satisfies Pauli exclusion principle (enforced by ψ being
Grassmann-number-valued!).

LNN = ψ̄(i/∂ −m)ψ

−GS
[(
ψ̄τjCτ2ψ̄

T
) (
ψTC−1τ2τjψ

)
−
(
ψ̄τjγ

5Cτ2ψ̄
T
) (
ψTC−1τ2γ

5τjψ
)]

−GV
[(
ψ̄τjγ

5γµCτ2ψ̄
T
) (
ψTC−1τ2γ

5γµτjψ
)

+
(
ψ̄γµCτ2ψ̄

T
) (
ψTC−1τ2γµψ

)]
− 1

2
GT
[(
ψ̄iσµνCτ2ψ̄

T
) (
ψTC−1τ2iσµνψ

)]
Neglect charge-symmetry violation (assume mp = mn ≡ mN ).
Interactions decouple into separate isoscalar and isovector sectors.
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Bethe-Salpeter vertex

Bethe-Salpeter equation in the covariant contact model:

k

p

k

p

k̄

=

Solution is the Bethe-Salpeter vertex:

ΓD(p, λ) =

[
αV /ε(p, λ) + iαT

σεp

MD

]
Cτ2

We can solve for αV and αT in terms of couplings GV and GT . . . and a UV regulator Λ
(from proper time regularization).
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Solution and static observables

Solution has parameters: GV , GT , and Λ.
These must be chosen somehow.
Fit to static observables:

Deuteron binding energy

Deuteron electromagnetic moments
3S1-

3D1 scattering parameters.

Contact model Empirical

εD (MeV) 2.18 2.22
rE (fm) 2.09 2.14
µD 0.879 0.857

QD (fm2) 0.285 0.286
3a1 (fm) 5.26 5.42
3r1 (fm) 1.78 1.76

Λ (MeV) 139 —
GV (GeV−2) -683 —
GT (GeV−2) -715 —

Λ = 139 MeV is a result of a fit—is not chosen by us.

Suggests the model “knows” it breaks down when pion exchange becomes relevant.

Note we have a non-zero, almost correct quadrupole moment.

We do actually have a D-wave!
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Origin of the D-wave

Whence the D-wave?
Bethe-Salpeter wave function takes the form

ψD(p, k, λ) = S(k)ΓD(p, λ)ST (p− k)

The numerator of the top-right 2× 2 corner (where both nucleons have positive energy):

ψ
(++)
D (p, k, λ) ∝ mN (MD +mN )(αV + αT )(ε · σ) + 2(αV − αT )(k · ε)(k · σ)

D-wave comes from second part of structure.
Ensures that even non-relativistic reductions, with:

ψNR(p, k, λ) ∝ ū(k, s1)ΓD(p, λ)ūT (p− k, s2)

have D-wave—that is, (k · ε)(k · σ) terms—in them.
Answer to whence: the lower components of u! This is a relativistic effect.
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DIS structure functions
How well can this model describe DIS structure functions?
(Use CJ15 for nucleon PDFs.)

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.1

0.2

0.3

0.4

0.5

F
2D

(x
,Q

2
=

5
G

eV
2
)

Contact model

Pure vector

JLab (2006)

Fermilab (1996)

HERMES (2011)

NMC (1992)

0.0 0.2 0.4 0.6 0.8 1.0
x

−0.002

−0.001

0.000

0.001

0.002

0.003

x
b 1
D

(x
)

Contact model

Pure vector

HERMES data

Not bad for F2(x,Q2) (underestimate at high x due to lack of short range correlations).

Doesn’t describe HERMES data for b1(x,Q2), but that’s expected.
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Electromagnetic form factors
What about electromagnetic form factors?
(Use Kelly-Riordan nucleon form factors.)
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Absolute size is too big at moderate-to-large Q2.

Agreement is OK for Q2 . 0.5 GeV2.

Suggests our GPDs will be applicable to only low −t.
Note that using only vector coupling (dashed curve) gives good account of A at large −t, but
poor account of tensor polarization. (It has nearly no D-wave.)
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Generalized nucleon distributions

t=0−−→
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h1 is the “typical” GND.

Reduces to light cone density in forward limit.

Gives F1V “body” form factor (for pointlike nucleons) when
integrated over x.

GNDs are nucleon densities in the deuteron using GPD language.
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Skewed GNDs

What does skewness do to a GND?

It breaks y → (2− y) symmetry.

y = 1± ξ
2 means both nucleons carry equal

fractions in final/initial state.

Harder to keep deuteron together with
momentum transfer.

y + ξ y − ξ

2 + ξ 2 − ξ
2 − y

Click here for GND animation
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To obtain deuteron GPDs...

We use the master convolution formula.
Generalized nucleon distributions (GNDs) are computed in the covariant contact model.

For the nucleon GPDs, we use the model of [Goeke et al., Prog. Part. Nucl. Phys. 47 (2001)],
since it

obeys polynomiality
has a non-trivial t-dependence
contains a D-term

For Q2 dependence, we use our own GPD evolution code, with splitting functions from [X. Ji,
PRD55 (1997), 7114].

A reminder that there are five (vector/helicity-independent) GPDs:

〈/n〉 = −(ε · ε′∗)H1+
(n · ε′∗)(∆ · ε)− (n · ε)(∆ · ε′∗)

2P · n H2+
(ε ·∆)(ε′∗ ·∆)

2M2
D

H3

− (n · ε)(∆ · ε′∗) + (n · ε′∗)(∆ · ε)
2P · n H4+

[
(n · ε)(n · ε′∗)M2

D

(P · n)2
+

1

3
(ε · ε′∗)

]
H5
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GPD results
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H1 is the “typical” GPD. (Dominated by monopole.)

Reduces to unpolarized PDF in the forward limit.

Gives F1 form factor (for real nucleons) when integrated
over x.
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Skewed GPD results

What does skewness do to a GPD?

There are well-known ridges at x = ±ξ.
These ridges are where deeply virtual
Compton scattering (DVCS) occurs!

x± ξ = 0 is the zero-fraction limit for the
initial (final) quark—limit of the sea.

|x| < |ξ| means pulling quark and
antiquark from target while leaving it in
tact—suppressed.

Click here for GPD animation
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Conclusions and outlook

In conclusion:

We have calculated deuteron GPDs in a manifestly covariant contact model.

Our GPDs obey polynomiality sum rules, and allow an unambiguous extraction of
generalized form factors.

Future work to be done:

We will use these GPDs to make predictions for cross sections and asymmetries in
DVCS, for both JLab and the EIC.

The model will be extended to other light nuclei (triton and helium).

The NJL model can be used to compute covariant nucleon GPDs.

We’re working on how to add long-range pion exchange to the model for more
accurate behavior at high −t.

Thanks for your time and attention!
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