

CIPANP 2018

Cosmological Bounds on Non-Abelian Dark Forces

PRD95, 015032, arXiv:1605.08048 PRD97, 075029, arXiv:1710.06447

TRIUMF & UBC

Collaboration with David Morrissey & Kris Sigurdson

Outline

- 1. Motivations
- 2. Dark Gauge Forces
- 3. Dark Glueballs and Cosmology
- 4. Cosmological Constraints

Standard Model

 $SU(3)_c \times SU(2)_L \times U(1)_Y \times STUFF$

Missing pieces:

- How does gravity connect with the SM?
- What is dark matter?
- Baryogenesis
- Hierarchy problem
- Strong CP Violation
- ...

G. Gelmini and P. Gondolo, arXiv:1009.3690

Trojanowski, arXiv:1707.06277

BSM at the LHC?

BSM at the LHC?

Dark Forces

- Minimal or non-existent connections with the SM
- Evade current LHC limits
- Evade current direct detection limits
- What can we ask about it?

Dark Forces

Great session on this earlier this week!

• What type of force?

Abelian – Dark U(1) Non-abelian – SU(N), SP(2N), SO(N), etc...

• What mass scale is involved?

Confinement into massive particles Sets relevant energy scales

• Does it connect with the SM?

Weak connections via particles charged under various light/dark gauge groups.

- Is it stable?
 Dark matter!
- HOW do we constrain it?

Move to a bigger lab!

Use cosmology and astrophysics to provide limits from the highest energies and earliest epochs in the Universe.

$$\mathcal{L}_{eff} = -\frac{1}{16\pi\alpha_x(\mu)} X^a_{\mu\nu} X^{a\mu\nu}$$

- Focus on dark gauge SU(3)
- Evolution of the coupling with energy leads to confinement.
- At low energies, gluons confine into glueballs.

Glueball Spectrum

- Come from lattice calculations
- Classified according to J^{PC}
- Similar for larger N
- No c-odd states for SU(2)!
- Lightest is generically 0^{++} , m ~ $7\Lambda_x$

Juknevich, 2009 Morningstar, C. J. & Peardon, 1999

From Gluons to Glueballs..

$$\mathcal{L}_{eff} = -\frac{1}{16\pi\alpha_x(\mu)} X^a_{\mu\nu} X^{a\mu\nu}$$

$$\frac{1}{N} X_{\mu\nu} X^{\mu\nu} \to finite \qquad \frac{1}{N} X_{\mu\nu} X^{\mu\nu} \to F(\phi, \partial_{\mu}, m_x)$$

Large N Scaling

NDA

From Gluons to Glueballs..

$$\mathcal{L}_{eff} = -\frac{1}{16\pi\alpha_x(\mu)} X^a_{\mu\nu} X^{a\mu\nu}$$

Identify m with the mass of the lightest scalar field

$$\mathcal{L}_{eff} = \frac{1}{2} (\partial \phi)^2 - \frac{1}{2} m^2 \phi^2 - m^4 \sum_{n \ge 3} \frac{a_n}{n!} \left(\frac{4\pi}{N}\right)^{n-2} \left(\frac{\phi}{m}\right)^n$$

Expand function to include all possible interactions

Glueball Interactions

Multiple Glueball Interactions

Allow any interactions that conserve good symmetries : J^{PC}

Limit to 2 to 2 interactions (3 to 2 only affects lightest state considerably).

C conservation implies many C-odd/even interactions will not be allowed

P conservation implies that many more interactions will be velocity suppressed for non-relativistic particles

$$\langle \sigma v \rangle_{ijkl} \sim \frac{(4\pi)^3}{N^4} \frac{\beta_{ijkl}}{s_{ij}} c_L \left(\frac{2}{x_i + x_j}\right)^L$$
Couplings Velocity Suppression

$$i + j \rightarrow k + l$$

$$C_i C_j = C_k C_l$$

$$P_i P_j = (-1)^L P_k P_l$$

Standard Model – Glueball Interactions

$$\mathcal{O}^{(6)} \sim \frac{1}{M^2} H^{\dagger} H tr(XX)$$

$$\mathcal{O}^{(8a)} \sim \frac{1}{M^4} tr(F_{SM}F_{SM})tr(XX)$$

$$\mathcal{O}^{(8b)} \sim \frac{1}{M^4} B_{\mu\nu} tr(XXX)^{\mu\nu}$$

- Non-renormalizable interactions with the SM are possible.
- Integrate out massive fermions charged under both SM and dark gauge groups.
- Couple a darkly charged scalar mediator through a Higgs portal.

Standard Model – Glueball Interactions

$$\mathcal{O}^{(6)} \sim \frac{1}{M^2} H^{\dagger} H tr(XX)$$

 $\Gamma_6 \sim \frac{m_0^5}{M^4}$

 $tr(XXX) \to 1^{+-}$ $tr(XX) \to 0^{++}$

Only the 0⁺⁺ can decay through dimension 6.

$$\mathcal{O}^{(8a)} \sim \frac{1}{M^4} tr(F_{SM}F_{SM})tr(XX)$$

$$\Gamma_8 \sim \frac{m_0^9}{M^8}$$

$$\mathcal{O}^{(8b)} \sim \frac{1}{M^4} B_{\mu\nu} tr(XXX)^{\mu\nu}$$
Violates C in the dark sector

Dimension 6 decays are parametrically earlier than dimension 8.

If C_x is a good symmetry, then the 1⁺⁻ will be stable.

Glueball Cosmology

Start simple: single glueball state.

Yield is set by the 3 to 2 interactions.

$$H^2 = \frac{1}{3M_{PL}^2}\rho = g_* \frac{\pi^2}{90} \frac{1}{M_{PL}^2} T^4$$

$$\dot{n} + 3Hn = -\langle \sigma v^2 \rangle_{32} (n^3 - n^2 \bar{n})$$

Hubble expansion

 $3 \rightarrow 2$ dilution

$$\bar{n}_x = g_x \left(\frac{m_x T_x}{2\pi}\right)^{3/2} e^{-m_x/T_x}$$

Glueball Cosmology

Start simple: single glueball state.

Yield is set by the 3 to 2 interactions.

$$\dot{n} + 3Hn = -\langle \sigma v^2 \rangle_{32} (n^3 - n^2 \bar{n})$$

Hubble expansion

 $3 \rightarrow 2$ dilution

Assumptions

- Dark sector is thermally decoupled
- Inflation (or something like it) and reheating occurred Heats the two sectors independently: T > T_x > m
- Glueballs self-thermalize
- Both sectors evolve adiabatically Use variable, R, as a parameter in the model
- This gives us enough information to solve for the dynamical evolution Can determine $T_x(T)$

Entropy Conservation:

$$R = \frac{s_x(T_x)}{s(T)} = constant$$

$$T_x s_x = \rho_x + P_x - \mu_x n_x$$

Temperature Evolution

Adding More Glueballs: C-Even

$\dot{n}_1 + 3Hn_1 =$	$-\langle \sigma_{32}v^2\rangle n_1^2(n_1-\bar{n}_1)$	3→2
	$-rac{1}{2}\langle\sigma v angle_{2111}\left[rac{ar{n}_2}{ar{n}_1}n_1n_2-n_2^2 ight]$	
	$-\langle \sigma v \rangle_{2211} \left[\frac{\bar{n}_2}{\bar{n}_1}^2 n_1^2 - n_2^2 \right]$	
	$-rac{1}{2}\langle\sigma v angle_{2214}\left[rac{ar{n}_2^2}{ar{n}_1ar{n}_4}n_1n_4-n_2^2 ight]$	
	$-\frac{1}{2} \langle \sigma v \rangle_{2415} \left[\frac{\bar{n}_2 \bar{n}_4}{\bar{n}_1 \bar{n}_5} n_1 n_5 - n_2 n_4 \right]$	
$\dot{n}_2 + 3Hn_2 =$	$+rac{1}{2}\langle\sigma v angle_{2111}\left[rac{ar{n}_2}{ar{n}_1}n_1n_2-n_2^2 ight]$	Coanni
	$+\langle \sigma v \rangle_{2211} \left[rac{{ar n_2}}{{ar n_1}}^2 n_1^2 - n_2^2 ight]$	
	$+\langle\sigma v angle_{2214}\left[rac{ar{n}_2^2}{ar{n}_1ar{n}_4}n_1n_4-n_2^2 ight]$	
	$+rac{1}{2}\langle\sigma v angle_{2415}\left[rac{ar{n}_2ar{n}_4}{ar{n}_1ar{n}_5}n_1n_5-n_2n_4 ight]$	
	$-\frac{1}{2} \langle \sigma v \rangle_{1512} \left[\frac{\bar{n}_1 \bar{n}_5}{\bar{n}_1 \bar{n}_2} n_1 n_2 - n_1 n_5 \right]$	
$\dot{n}_4 + 3Hn_4 =$	$-rac{1}{2}\langle\sigma v angle_{2214}\left[rac{ar{n}_2^2}{ar{n}_1ar{n}_4}n_1n_4-n_2^2 ight]$	
	$+rac{1}{2}\langle\sigma v angle_{2415}\left[rac{ar{n}_2ar{n}_4}{ar{n}_1ar{n}_5}n_1n_5-n_2n_4 ight]$	Smalle
$\dot{n}_5 + 3Hn_5 =$	$-\frac{1}{2} \langle \sigma v \rangle_{2415} \left[\frac{\bar{n}_2 \bar{n}_4}{\bar{n}_1 \bar{n}_5} n_1 n_5 - n_2 n_4 \right]$	Chang
	$+rac{1}{2}\langle\sigma v angle_{1512}\left[rac{ar{n}_1ar{n}_5}{ar{n}_1ar{n}_2}n_1n_2-n_1n_5 ight]$	

Coannihilations

- Can model independently of the c-odd states.
- Get a host of different freeze-out processes at play.

Smaller number changing processes

0⁺⁺ dominates, and is largely unaffected by underlying states. (Relic density entirely set by $3 \rightarrow 2$ process).

2⁺⁺ depletes more efficiently relative to others due to coannihilation effects.

Forestell, Morrissey, Sigurdson, 2017

Adding More Glueballs: C-Odd

- Can model independently of the C-even states.
- Like the 0⁺⁺ state, the 1⁺⁻ state largely dominates the C-odd relic yield.
- Coannihilations of heavier C-odd states reduce these heavier state yields.
- Sufficient to use a 2 state system consisting of only the 0⁺⁺ and 1⁺⁻

$$\dot{n}_{0} + 3Hn_{0} = -\langle \sigma_{32}v^{2} \rangle n_{0}^{2}(n_{0} - \bar{n}_{1}) + \langle \sigma v \rangle_{1100} \left[n_{1}^{2} - \left(\frac{n_{0}}{\bar{n}_{0}}\right)^{2} \bar{n}_{1}^{2} \right]$$

 $\dot{n}_1 + 3Hn_1 =$

 $-\langle \sigma v \rangle_{1100} \left[n_1^2 - \left(\frac{n_0}{\bar{n}_0} \right)^2 \bar{n}_1^2 \right]$

Forestell, Morrissey, Sigurdson, 2018

Cosmological Constraints

Kawasaki, 2004 Hu & Silk, 1993 Fradette, 2014 Cohen, 2016

Explicit Decay Scenarios

1. Dimension-8 decays with broken C_x

All glueballs decay with parametrically similar rates.

2. Dimension-8 decays with exact C_x

1⁺⁻ is stable.

3. Dimension-6 decays with broken C_x

Glueballs decay through the dimension-6 operator except for the C-odd 1⁺⁻ state, making it longer lived.

4. Dimension-6 decays with exact C_x

1⁺⁻ is stable.

Dimension 8, Broken C_x

Dimension 8, Exact C_x

Forestell, Morrissey, Sigurdson, 2018

Dimension 6, Broken C_x

Dimension 6, Exact C_x

- Now is a good time to explore new dark gauge forces.
- Rich dynamics in the non-Abelian sector.
- Considered a spectrum of massive glueballs.
- Complicated freeze-out dynamics including a $3\rightarrow 2$ cannibalism phase.
- Constrain the gauge based on lifetimes, using various cosmological laboratories.
- Constraints are placed on m, M, R.

