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Perspective: Why Search for       ?
The origin of the neutrino mass is not yet known

If B-L is broken, then the “see-saw” mechanism can explain 
why mν is so small  [Minkowski, 1977; Gell-Mann, Ramond, & Slansky, 
1979; Yanagida, 1980; Mohapatra & Senjanovic, 1980]

Α massive neutrino can have a Dirac and/or Majorana mass 

If both mass types appear, the mass eigenstates would be 
Majorana

If Dirac, then one can use the Higgs mechanism 
(after adding a new field: νR )
If Majorana, a dimension five (B-L violating!) mass term 
appears (                       )

B � L violation and the neutrino mass

Elementary, charged fermions get their mass from the Higgs mechanism, but
the origin of the neutrino mass is not yet known.
A massive neutrino could also be a Dirac particle, with its mass generated by
the Higgs mechanism (N.B. enter the right-handed neutrino! Note Yukawa
coupling ⇠ 10�12!)
A massive neutrino could be a Majorana particle with its mass generated by
the d = 5 operator �(v2

weak/⇤)⌫
T

L

C⌫
L

(N.B. B � L is broken!). [Weinberg, 1979]

A massive neutrino could also get its mass from terms of both types. Even if
the Dirac mass were to dominate, the mass eigenstates would be Majorana.
[Gribov and Pontecorvo, 1969; Bilenky and Pontecorvo, 1983]

Although a Majorana mass term breaks B � L, other sources of B � L
violation could operate.
Nevertheless, the observation of neutrinoless �� decay (|�L| = 2) would
reveal that the neutrino is Majorana, that the neutrino is its own antiparticle.
[Schechter and Valle, PRD, 1982]

A bonus: if B � L is broken, the “see-saw” mechanism rationalizes the
smallness of the ⌫ mass. [Minkowski, 1977; Gell-Mann, Ramond, & Slansky, 1979; Yanagida, 1980; Mohapatra

& Senjanovic, 1980]
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 [Gribov and Pontecorvo, 1969; Bilenky and Pontecorvo, 1983]

[Weinberg, 1979]

The neutrino is its own antiparticle
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Why the energy scale of B-L violation matters 
 

Mechanisms of 0ν ββ decay

Why the scale of B-L violation also matters

If we establish that B � L is broken (by neutrinos), then...

Electric charge quantization can be compatible w/ nonzero ⌫ mass
[Babu & Mohapatra, 1989, 1990; note review: Foot et al., 1993]

Leptogenesis may exist (and explain the BAU)
[Fukugita & Yanagida, 1986; note review: Buchmüller et al., 2005]

Even so, we may still not know the mechanism of B � L violation.

If it is generated by the Weinberg operator, then SM electroweak symmetry
yields m⌫ = �v

2
weak/⇤. If � ⇠ 1 and ⇤ � vweak, then naturally m⌫ ⌧ m

f

!
N.B. if m⌫ ⇠ 0.2 eV, then ⇤ ⇠ 1.6 ⇥ 109 GeV!
Alternatively it could also be generated by higher dimension |�L| = 2
operators, so that m⌫ is small just because d � 4 and ⇤ need not be so large.
[EFTs: Babu & Leung, 2001; de Gouvea & Jenkins, 2008 and many models]

Can we establish the scale of B � L violation in another way?
N.B. searches for same sign dilepton final states at the LHC also constrain
the higher dimension (“short range”) operators. [Helo, Kovalenko, Hirsch, and Päs, 2013]
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via           transitions u-u
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Neutron-Antineutron Transitions 

1. Introduction. Searches for processes that violate standard model (SM) symmetries

are of particular interest because their discovery would serve as unequivocal evidence for

dynamics beyond the SM. The gauge symmetry and known particle content of the SM

implies that its Lagrangian conserves baryon number B and lepton number L, though it is

the combination B�L that survives at the quantum level. Thus the observation of neutron-

antineutron (n-n̄) oscillations, a |�B| = 2 process, would show that B � L symmetry is

broken and ergo that dynamics beyond the SM exists. The current constraints on |B| = 1

operators from the non-observation of nucleon decay are severe, with the strongest limits

coming from searches for proton decay to final states that respect B�L symmetry, such as

p ! e+⇡0, for which the partial half-life exceeds 8.2⇥ 1033 years at 90% C.L. [1]. Although

particular |�B| = 1 operators, such as those that mediate n ! e�⇡+, e.g., can also give rise

to n-n̄ oscillations, Mohapatra and others have emphasized that the origin of nucleon decay

and n-n̄ oscillations can be completely di↵erent [2–7]. Recently, moreover, simple models

that give rise to n-n̄ oscillations but not nucleon decay have been enumerated [6].

Phenomenological studies of meson mixing are typically realized in the context of a 2⇥ 2

e↵ective Hamiltonian matrix [8]. The seminal papers on free n-n̄ oscillations [9, 10] have also

followed such a framework, and the existing experimental search [11] has, in turn, followed its

guidance. Consequently we briefly review this work before turning to our generalization. The

neutron magnetic moment is well-known, yielding an interaction with an external magnetic

field B of form �µ
n

S

n

·B/S
n

, where µ
n

is the magnitude of the magnetic moment and S

n

is the neutron spin. Nevertheless, the early papers [9, 10] analyze the e↵ect of an external

magnetic field in a 2 ⇥ 2 framework, explicitly suppressing the role of the neutron (and

antineutron) spin. Supposing the neutron spin to be in the direction of the applied B-field

and employing CPT invariance, the mass matrix M takes the form [9]

M =

0

@ M
n

� µ
n

B �

� M
n

+ µ
n

B

1

A , (1)

where we note that CPT invariance guarantees not only that the neutron and antineutron

masses are equal but also that the projections of the neutron and antineutron magnetic

moments on B are equal in magnitude and of opposite sign. We work in units ~ = c = 1

and ignore the finite neutron and antineutron lifetimes throughout. Diagonalizing M yields

2

Pn!n̄(t) '
�2

2(µnB)

2
[1� cos(2µnBt)]

Can be realized in different ways 

• neutron-antineutron oscillations (free n’s & in nuclei)
Enter searches for 

• dinucleon decay (in nuclei)
     (limited by finite nuclear density)
•  neutron-antineutron conversion

“spontaneous”
& thus sensitive to 

environment

[SG & Xinshuai Yan,  arXiv:1710.09292, PRD 2018 (also arXiv:1602.00693, PRD 2016)]

(NEW!)
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• Majorana C, P,  and T phase constraints

• Incompatible with pure QCD in the isospin 
symmetry (but compatible with the SM!) 

Neutron-Antineutron Transitions
Some Novel Features 

Effective Hamiltonian Framework for n-n̄ with Spin

A 4 ⇥ 4 matrix describes H in this case.
[SG and Jafari, 2015]

H
ij

with i , j = 1, . . . 4 maps to n(p,+), n̄(p,+), n(p,�), and n̄(p,�).

Hermiticity and CPT invariance limit its form.

But what is the precise form of the CPT transformation in this case?

Recall from neutrino physics: the discrete symmetry transformations of a
theory should not depend on whether it contains Dirac or Majorana fields.
[Kayser and Goldhaber, 1983; Kayser, 1984 — also Carruthers, 1971; Feinberg and Weinberg, 1959]

Consequently the CPT, CP, and C phases of Majorana fields or states are
restricted.
[Kayser and Goldhaber, 1983; Kayser, 1984]

Generalizing this to theories of fermions with B-L violation, the phases
associated with the discrete symmetry transformations must themselves be
restricted.
[SG and Yan, 2016]
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Dirac Fermions with B-L ViolationTheories of Dirac Fermions with B � L Violation

The prototypical B � L violating operator is of form
 T

C + h.c.
Since C satisfies (�µ⌫)T

C = �C�µ⌫ , this operator is Lorentz invariant. Under
CPT...

O1 =  T

C + h.c. CPT
=) �(⌘

c

⌘
p

⌘
t

)2

O2 =  T

C�5 + h.c. CPT
=) �(⌘

c

⌘
p

⌘
t

)2

O3 =  T

C�µ @⌫Fµ⌫ + h.c. CPT
=) +(⌘

c

⌘
p

⌘
t

)2

O4 =  T

C�µ�5 @⌫Fµ⌫ + h.c. CPT
=) �(⌘

c

⌘
p

⌘
t

)2

O5 =  T

C�µ⌫ F

µ⌫ + h.c. CPT
=) +(⌘

c

⌘
p

⌘
t

)2

O6 =  T

C�µ⌫�5 F

µ⌫ + h.c. CPT
=) +(⌘

c

⌘
p

⌘
t

)2

The phase constraint (⌘
c

⌘
p

⌘
t

)2 = �1 only flips the sign of the eigenvalue!
The operators do not transform under CPT with definite sign!
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The phase constraint is crucial!

✖
✖  

✖      

CPT odd operators vanish from fermion antisymmetry
Neutrinos:

Theories of Dirac Fermions with B � L Violation

The operators

O3 =  T

C�µ @⌫Fµ⌫ + h.c. CPT
=) +(⌘

c

⌘
p

⌘
t

)2

O5 =  T

C�µ⌫ F

µ⌫ + h.c. CPT
=) +(⌘

c

⌘
p

⌘
t

)2

O6 =  T

C�µ⌫�5 F

µ⌫ + h.c. CPT
=) +(⌘

c

⌘
p

⌘
t

)2

become CPT odd once the phase constraint (⌘
c

⌘
p

⌘
t

)2 = �1 is applied.
They also vanish once the anticommuting nature of the fermion fields is taken
into account.
That these operators do not contribute has long been recognized:
The vector, tensor, and axial tensor electromagnetic form factors of Majorana
neutrinos vanish.
[Schechter and Valle, 1981; Nieves, 1982; Kayser, 1982; Shrock, 1982; Li and Wilczek, 1982; Davidson, Gorbahn, Santamaria,

2006]

Recall flavor-spin neutrino oscillations. The flavor-diagonal ⌫ transition
magnetic moment vanishes due to the antisymmetry of fermion exchange.
[Okun, Voloshin, and Vysotsky, 1986 & 1986; Lim and Marciano, 1988]

S. Gardner (Univ. of Kentucky) n-n̄ with Spin KITP Seminar 9/30/16 13 / 21

6

unimodular phases:  ηP∝ i   ;  ηPηCηT ∝ i 

Constraints on unimodular phase in P, CT, and CPT!



n - n Transitions & Spin
Spin can play a role in a “mediated” process

n-n̄ Oscillations and Spin

Upon including ⌘2
cpt

= �1

No n+ ! n̄� or n� ! n̄+ transitions

Quenching of nn̄ transitions irrespective of transverse magnetic fields

However, spin-dependent effects appear in n-n̄ transitions. Consider

O4 =  T

C�µ�5 @
⌫
Fµ⌫ + h.c.

n(+) ! n̄(�) occurs directly because the interaction with the current flips the
spin.
This is concomitant with n(p1, s1) + n(p2, s2) ! �⇤(k), for which only L = 1
and S = 1 is allowed via angular momentum conservation and Fermi
statistics. [Berezhiani and Vainshtein, 2015]

Here e + n ! n̄ + e, e.g., so that the experimental concept for “nn̄

conversion” would be completely different.
BSM theories that generate nn̄ oscillations support nn̄ conversion as well.
[SG and Yan, in preparation, 2016]
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A neutron-antineutron oscillation is a spontaneous 
process & thus the spin does not ever flip
However, 
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Neutron-Antineutron Conversion
Different mechanisms are possible

u-u 

u-u

❋ conversion and oscillation could share 
the same “TeV” scale BSM sources 

Then the quark-level conversion
operators can be derived noting 
the quarks carry electric charge

❋ conversion and oscillation could come 
from different BSM sources

Then the neutron-level conversion
operators could also be different

Note studies of scattering matrix elements 
of Majorana dark matter [Kumar & Marfatia, PRD, 2013]
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Effective Lagrangian 

Le↵ � �1

2
µnn̄�

µ⌫nFµ⌫ � �

2
nTCn� ⌘

2
nTC�µ�5njµ + h.c.

Neutron interactions with B-L violation  & 
electromagnetism

magnetic moment
n ! n̄

n ! n̄

oscillation
conversion

[SG & Xinshuai Yan, arXiv: 1710.09292]

Since the quarks carry electric charge, 
a BSM model that generates neutron-

antineutron oscillations can also 
generate conversion

“spontaneous”

Qej⌫ = @µF
µ⌫[                     ]
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Neutron-Antineutron Oscillation
Quark-level operators

III. n− n̄ TRANSITION OPERATORS
AT THE QUARK LEVEL

Considering the n − n̄ transition operators of Eq. (1)
from the viewpoint of simple dimensional analysis, we see
that the mass dimension of δ, [δ], has ½δ" ¼ 1, whereas
½η" ¼ −2 since ½jμ" ¼ 3. Since ½η/δ" ¼ −3, one might think
that n − n̄ conversion would be suppressed by an additional
factor of Λ3

NP, where ΛNP is the cutoff mass scale of new
physics. This is not necessarily true because of the presence
of other energy scales. To illustrate this explicitly, we need
to develop the form of the n − n̄ conversion operators at the
quark level. We do this by considering energy scales at
which the quark structure of the nucleon becomes explicit
but are still well below the nominal scale of new physics,
ΛQCD ≲ E ≪ ΛNP. In this way we can realize quark-level
n − n̄ conversion operators through electromagnetic inter-
actions, by dressing the quarks of the quark-level n − n̄
oscillation operators with photons, since the participating
quarks also carry electric charge.
The effective Lagrangian for n − n̄ oscillations at the

QCD scale involves operators with six quark fields, and
which thus have an associated coefficient of mass dimen-
sion −5. Since these operators are key to our work, we
briefly summarize their important ingredients. Based on
our earlier discussion of the nucleon-level operators, we
expect the quark-level “building blocks” to have the
structure qTα1χ Cq

β
2χ , where the numerical and Greek indices

are flavor and color labels, respectively. We work, too, in a
chiral basis with χ ∈ L, R and note that each quark block
appears as a chiral pair, since operators of mixed chirality
always vanish. The final n − n̄ operators should be com-
patible with the hadrons’ flavor content and also be
invariant under color symmetry, SUð3Þc. There are three
ways of forming an SU(3) singlet from a product of six
fundamental representations in SUð3Þc. However, in the
case of quarks of a single generation, only two color tensors
can occur [46], namely,

ðTsÞαβγδρσ ¼ ϵραγϵσβδ þ ϵσαγϵρβδ þ ϵρβγϵσαδ þ ϵσβγϵραδ;

ð5Þ

ðTaÞαβγδρσ ¼ ϵραβϵσγδ þ ϵσαβϵργδ ð6Þ

with ϵ denoting a totally antisymmetric tensor. We refer to
Ref. [46] for a discussion of B-L violating operators with
arbitrary generational structure. Working in a chiral basis,
so that qχ ≡ ð1þ χγ5Þq/2 and χ ¼ ' (or, equivalently,
writing qχ with χ ¼ R

L), we note, ultimately, that there are
three types of n − n̄ operators [47]:

ðO1Þχ1χ2χ3 ¼ ½uTαχ1 Cu
β
χ1 "½d

Tγ
χ2 Cd

δ
χ2 "½d

Tρ
χ3 Cd

σ
χ3 "ðTsÞαβγδρσ; ð7Þ

ðO2Þχ1χ2χ3 ¼½uTαχ1 Cd
β
χ1 "½u

Tγ
χ2 Cd

δ
χ2 "½d

Tρ
χ3 Cd

σ
χ3 "ðTsÞαβγδρσ; ð8Þ

ðO3Þχ1χ2χ3 ¼½uTαχ1 Cd
β
χ1 "½u

Tγ
χ2 Cd

δ
χ2 "½d

Tρ
χ3 Cd

σ
χ3 "ðTaÞαβγδρσ; ð9Þ

although only 14 of these 24 operators are independent,
because the antisymmetric tensors yield the relation-
ships [47]

ðO1Þχ1LR ¼ ðO1Þχ1RL; ðO2;3ÞLRχ3 ¼ ðO2;3ÞRLχ3 ; ð10Þ

and [48]

ðO2Þmmn − ðO1Þmmn ¼ 3ðO3Þmmn; ð11Þ

where m, n ∈ ½L; R". If we also demand that the operators
be invariant under SUð2ÞL × Uð1ÞY, the electroweak gauge
symmetry of the SM, then finally only four operators are
independent [47,48]. For example,

P1 ¼ ðO1ÞRRR; ð12Þ

P2 ¼ ðO2ÞRRR; ð13Þ

P3 ¼ ½qTiαL CqjβL "½u
Tγ
R CdδR"½d

Tρ
R CdσR"ϵijðTsÞαβγδρσ

¼ 2ðO3ÞLRR; ð14Þ

P4 ¼ ½qTiαL CqjβL "½q
Tkγ
L CqlδL "½d

Tρ
R CdσR"ϵijϵklðTaÞαβγδρσ

¼ 4ðO3ÞLLR; ð15Þ

where the Roman indices label the members of a left-
handed SU(2) doublet.
The matrix elements of these operators have been

evaluated in the MIT bag model by Rao and Shrock
[47] and, much more recently, in lattice QCD [49,50].
Once we have developed the quark-level n − n̄ conversion
operators we, too, use the MIT bag model to evaluate their
matrix elements. We discuss noteworthy technical aspects
of this in Appendix B.

A. From quark-level operators for n− n̄ oscillation
to n− n̄ conversion

Since dimensional analysis shows that the effective
operator for n − n̄ conversion would be suppressed with
respect to that for n − n̄ oscillation by three powers of a
new physics mass scale, we wish to explore the manner in
which we can use SM physics to find a more favorable
relationship. In particular, since the quarks carry electric
charge, we explore the possibility that the external source
in the n − n̄ conversion operator is the electromagnetic
current. Of course quarks also carry color charge, but the
associated current ∂μFa

μν is not SUð3Þc gauge invariant. In
what follows we consider each of the n − n̄ transition
operators in turn and determine the low-energy effective
operator that follows from evaluating how its quarks
interact with a virtual photon generated by a scattered
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our earlier discussion of the nucleon-level operators, we
expect the quark-level “building blocks” to have the
structure qTα1χ Cq

β
2χ , where the numerical and Greek indices

are flavor and color labels, respectively. We work, too, in a
chiral basis with χ ∈ L, R and note that each quark block
appears as a chiral pair, since operators of mixed chirality
always vanish. The final n − n̄ operators should be com-
patible with the hadrons’ flavor content and also be
invariant under color symmetry, SUð3Þc. There are three
ways of forming an SU(3) singlet from a product of six
fundamental representations in SUð3Þc. However, in the
case of quarks of a single generation, only two color tensors
can occur [46], namely,

ðTsÞαβγδρσ ¼ ϵραγϵσβδ þ ϵσαγϵρβδ þ ϵρβγϵσαδ þ ϵσβγϵραδ;

ð5Þ

ðTaÞαβγδρσ ¼ ϵραβϵσγδ þ ϵσαβϵργδ ð6Þ

with ϵ denoting a totally antisymmetric tensor. We refer to
Ref. [46] for a discussion of B-L violating operators with
arbitrary generational structure. Working in a chiral basis,
so that qχ ≡ ð1þ χγ5Þq/2 and χ ¼ ' (or, equivalently,
writing qχ with χ ¼ R

L), we note, ultimately, that there are
three types of n − n̄ operators [47]:

ðO1Þχ1χ2χ3 ¼ ½uTαχ1 Cu
β
χ1 "½d

Tγ
χ2 Cd

δ
χ2 "½d

Tρ
χ3 Cd

σ
χ3 "ðTsÞαβγδρσ; ð7Þ

ðO2Þχ1χ2χ3 ¼½uTαχ1 Cd
β
χ1 "½u

Tγ
χ2 Cd

δ
χ2 "½d

Tρ
χ3 Cd

σ
χ3 "ðTsÞαβγδρσ; ð8Þ

ðO3Þχ1χ2χ3 ¼½uTαχ1 Cd
β
χ1 "½u

Tγ
χ2 Cd

δ
χ2 "½d

Tρ
χ3 Cd

σ
χ3 "ðTaÞαβγδρσ; ð9Þ

although only 14 of these 24 operators are independent,
because the antisymmetric tensors yield the relation-
ships [47]

ðO1Þχ1LR ¼ ðO1Þχ1RL; ðO2;3ÞLRχ3 ¼ ðO2;3ÞRLχ3 ; ð10Þ

and [48]

ðO2Þmmn − ðO1Þmmn ¼ 3ðO3Þmmn; ð11Þ

where m, n ∈ ½L; R". If we also demand that the operators
be invariant under SUð2ÞL × Uð1ÞY, the electroweak gauge
symmetry of the SM, then finally only four operators are
independent [47,48]. For example,

P1 ¼ ðO1ÞRRR; ð12Þ

P2 ¼ ðO2ÞRRR; ð13Þ

P3 ¼ ½qTiαL CqjβL "½u
Tγ
R CdδR"½d

Tρ
R CdσR"ϵijðTsÞαβγδρσ

¼ 2ðO3ÞLRR; ð14Þ

P4 ¼ ½qTiαL CqjβL "½q
Tkγ
L CqlδL "½d

Tρ
R CdσR"ϵijϵklðTaÞαβγδρσ

¼ 4ðO3ÞLLR; ð15Þ

where the Roman indices label the members of a left-
handed SU(2) doublet.
The matrix elements of these operators have been

evaluated in the MIT bag model by Rao and Shrock
[47] and, much more recently, in lattice QCD [49,50].
Once we have developed the quark-level n − n̄ conversion
operators we, too, use the MIT bag model to evaluate their
matrix elements. We discuss noteworthy technical aspects
of this in Appendix B.

A. From quark-level operators for n− n̄ oscillation
to n− n̄ conversion

Since dimensional analysis shows that the effective
operator for n − n̄ conversion would be suppressed with
respect to that for n − n̄ oscillation by three powers of a
new physics mass scale, we wish to explore the manner in
which we can use SM physics to find a more favorable
relationship. In particular, since the quarks carry electric
charge, we explore the possibility that the external source
in the n − n̄ conversion operator is the electromagnetic
current. Of course quarks also carry color charge, but the
associated current ∂μFa

μν is not SUð3Þc gauge invariant. In
what follows we consider each of the n − n̄ transition
operators in turn and determine the low-energy effective
operator that follows from evaluating how its quarks
interact with a virtual photon generated by a scattered
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evaluated in the MIT bag model by Rao and Shrock
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Once we have developed the quark-level n − n̄ conversion
operators we, too, use the MIT bag model to evaluate their
matrix elements. We discuss noteworthy technical aspects
of this in Appendix B.

A. From quark-level operators for n− n̄ oscillation
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Since dimensional analysis shows that the effective
operator for n − n̄ conversion would be suppressed with
respect to that for n − n̄ oscillation by three powers of a
new physics mass scale, we wish to explore the manner in
which we can use SM physics to find a more favorable
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charge, we explore the possibility that the external source
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Note
O2 → O3

 Ts →  Ta

[Rao & Shrock, 1982]

Only 14 of 24 operators are independent✿ 

[Caswell, Milutinovic, & Senjanovic, 1983]
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charged particle, such as an electron. In any particular,
leading-dimension n − n̄ operator, there are three blocks,
and in each block there are two charged particles. When a
virtual photon is attached to these blocks, there are six
possible ways that correspond to six different Feynman
diagrams, as shown in Fig. 1. Note that we do not attach a
photon line to the solid “blob” at the center because, as we
shall see, this would yield an effect that would be sup-
pressed by higher powers of the new physics mass scale.
To determine the operator structures that emerge upon

including electromagnetic interactions, we first compute
the matrix element for the process qρðpÞ þ γðkÞ → q̄δðp0Þ,
noting that the superscripts are flavor indices. Working in a
chiral basis, the pertinent terms in the interaction
Hamiltonian are

HI ⊃
δq
2

X

χ1

ðψρT
χ1 Cψ

δ
χ1 þ ψ̄ δ

χ1Cψ̄
ρT
χ1 Þ þQρe

X

χ2

ψ̄ρ
χ2=Aψ

ρ
χ2

þQδe
X

χ3

ψ̄ δ
χ3=Aψ

δ
χ3 ; ð16Þ

where both qρ and q̄δ have mass m. Computing

hq̄δðp0ÞjT
!X

χ1;χ2

!
−i

δq
2

Z
d4xψρT

χ1 Cψ
δ
χ1

"

×
!
−iQρe

Z
d4yψ̄ρ

χ2=Aψ
ρ
χ2 − iQδe

Z
d4yψ̄ δ

χ2=Aψ
δ
χ2

""

× jqρðpÞγðkÞi; ð17Þ

using standard techniques [51], noting T is the time-
ordering operator and the quarks are treated as free fields,
we find

−
δq
2
emi

X

χ2

!
Qρ

ūδðp0; s0Þ=ϵðkÞð1þ χ2γ5Þuρðp; sÞ
p02 −m2

−Qδ
v̄ρðp; sÞ=ϵðkÞð1þ χ2γ5Þvδðp0; s0Þ

p2 −m2

"

× ð2πÞ4δð4Þðp0 − p − kÞ; ð18Þ

where ϵμ is the polarization vector of the photon, or, finally,

−
δq
2
emi

X

χ2

!
ūδðp0; s0Þ=ϵðkÞuρðp; sÞ

!
Qρ

p02 −m2
−

Qδ

p2 −m2

"

þ χ2ūδðp0; s0Þ=ϵðkÞγ5uρðp; sÞ
!

Qρ

p02 −m2
þ Qδ

p2 −m2

""

× ð2πÞ4δð4Þðp0 − p − kÞ; ð19Þ

where we have employed the conventions and relationships
of Appendix A throughout. Since p2 ¼ p02, we see the
vector term vanishes if Qρ ¼ Qδ, as we would expect from
CPT considerations [37]. However, if Qδ ≠ Qρ the final
result is nonzero even after summing over χ2. Replacing
ϵμðkÞ with kμ we see that the Ward-Takahashi identity is
satisfied after summing over χ2. For fixed χ2 the identity
also follows once we sum over the photon-quark contri-
butions that would yield an electrically neutral initial or
final state, as in the case of n − n̄ transitions. Thus we
extract the effective operator associated with the quark-
antiquark-photon vertex as

−
mδqe

p2 −m2
ðQρψδT

−χ2Cγ
μψρ

χ2 −QδψδT
χ2 Cγ

μψρ
−χ2Þ; ð20Þ

noting that only the Cγμγ5 Lorentz structure would survive
if ρ ¼ δ. For use in the neutron case we recast this as

FIG. 1. A neutron-antineutron transition is realized through electron-neutron scattering. The virtual photon emitted from the scattered
electron interacts with a general six-fermion n − n̄ oscillation vertex. The particular graphs shown illustrate the two possible ways of
attaching a photon to each of the blocks that appear in the ðO1Þχ1χ2χ3 operator of Eq. (7).

PHENOMENOLOGY OF NEUTRON-ANTINEUTRON CONVERSION PHYS. REV. D 97, 056008 (2018)

056008-5

charged particle, such as an electron. In any particular,
leading-dimension n − n̄ operator, there are three blocks,
and in each block there are two charged particles. When a
virtual photon is attached to these blocks, there are six
possible ways that correspond to six different Feynman
diagrams, as shown in Fig. 1. Note that we do not attach a
photon line to the solid “blob” at the center because, as we
shall see, this would yield an effect that would be sup-
pressed by higher powers of the new physics mass scale.
To determine the operator structures that emerge upon

including electromagnetic interactions, we first compute
the matrix element for the process qρðpÞ þ γðkÞ → q̄δðp0Þ,
noting that the superscripts are flavor indices. Working in a
chiral basis, the pertinent terms in the interaction
Hamiltonian are

HI ⊃
δq
2

X

χ1

ðψρT
χ1 Cψ

δ
χ1 þ ψ̄ δ

χ1Cψ̄
ρT
χ1 Þ þQρe

X

χ2

ψ̄ρ
χ2=Aψ

ρ
χ2

þQδe
X

χ3

ψ̄ δ
χ3=Aψ

δ
χ3 ; ð16Þ

where both qρ and q̄δ have mass m. Computing

hq̄δðp0ÞjT
!X

χ1;χ2

!
−i

δq
2

Z
d4xψρT

χ1 Cψ
δ
χ1

"

×
!
−iQρe

Z
d4yψ̄ρ

χ2=Aψ
ρ
χ2 − iQδe

Z
d4yψ̄ δ

χ2=Aψ
δ
χ2

""

× jqρðpÞγðkÞi; ð17Þ

using standard techniques [51], noting T is the time-
ordering operator and the quarks are treated as free fields,
we find

−
δq
2
emi

X

χ2

!
Qρ
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From Oscillation to Conversion
Quark-level operators: compute qρ(p)+γ(k)→qδ(p′)

flavor

matrix element:

Effective vertex

chiral basis

if δ=ρ
yields

C γμγ5 only

✿
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B-L Violation via e-n scattering 
Linking neutron-antineutron oscillation to conversion 

(O2)�1�2�3 = [uT↵
�1

Cd��1
][uT�

�2
Cd��2

][dT⇢
�3

Cd��3
](Ts)↵���⇢�

[Rao & Shrock, 1983]

e.g.:

(Õ2)
�µ
�1�2�3

=
h
[u↵T

��C�µ�5d
�
� � 2u↵T

� C�µ�5d
�
��][u

� T
�2

Cd��2
][d⇢T

�3
Cd��3

]

+[u↵T
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Cd��1
][u� T
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�
� � 2u� T
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��][d
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Cd��3
]

+[u↵T
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][u� T

�2
Cd��2

][d⇢T
��C�µ�5d

�
� + d⇢T
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�
��]

i
Ts…
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B-L Violation via e-n scattering
Linking neutron-antineutron oscillation to conversion

(Õ1)
�µ
�1�2�3

=
h
� 2[u↵T

��C�µ�5u
�
� + u↵T

� C�µ�5u
�
��][d

� T
�2

Cd��2
][d⇢T

�3
Cd��3

]

+ [u↵T
�1

Cu�
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][d� T

��C�µ�5d
�
� + d� T
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�
��][d
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Cd��3
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+ [u↵T
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Cu�
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][d� T
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Cd��2

][d⇢T
��C�µ�5d

�
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� C�µ�5d
�
��]

i
(Ts)↵���⇢�

(Õ1)
�
�1�2�3

= (�1)�1�2�3

em

3(p2e↵ �m2)

Qejµ
q2

(Õ1)
�µ
�1�2�3

,

Moreover…

yielding

with similar relationships for i=2,3
The hadronic matrix elements are computed 

in the MIT bag model. 

[Here χ=R-χ=L for em scattering]

[only these in em case]
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B-L Violation via e-d scattering
What sorts of limits could be set?

⌘v̄(p0, s0)C/j�5u(p, s) =
em

3(p2e↵ �m2)

ejµ
q2

⇥hn̄q(p
0, s0)|

Z
d

3
x

X

i,�1,�2,�3

0
(�i)�1,�2,� 3 [( ˜Oi)

Rµ
�1,�2,�3

� ( ˜Oi)
Lµ
�1,�2,�3

]|nq(p, s)i

Matching relation:

The best limits come from small-angle scattering
— using the uncertainty principle to estimate θmin

|�̃| . 2⇥ 10�15

r
N events

1 event

r
1 yr

t

s
0.6⇥ 1017 s�1

�

r
1 m

L

s
5.1⇥ 1022 cm�3

⇢
GeV.

Sensitivity estimate for a beam energy of 20 MeV:

for the Majorana mass of the neutron
14



B-L Violation via n-d scattering
What sorts of limits could be set?

Sensitivity estimate (set by n-e scattering): 

for the Majorana mass of the neutron

For cold neutrons (as at the ILL) 

|pppn| = 1.94 keV

|�̃| . 3⇥ 10�19

r
N events

1 event

r
1 yr

t

s
1.7⇥ 1011 s�1

�

r
1 m

L

s
5⇥ 1022 cm�3

⇢
GeV

The combination of e and n beam experiments should 
offer a powerful crosscheck
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Ongoing Work

We are studying  
how the best experimental paths  

change if conversion and oscillation  
stem from different   
new physics sources 
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• The discovery of B-L violation would reveal the existence of 
dynamics beyond the Standard Model

• The energy scale of B-L violation speaks to different explanations 
as to why the neutrino is light (A “TeV scale” mechanism could also 
generate B-L violation in the quark sector)

• We have discussed neutron-antineutron conversion, i.e., neutron-
antineutron transitions as mediated by an external current (as via 
scattering)

• Neutron-antineutron conversion is not sensitive to medium effects 
and can also yield limits on the neutron’s Majorana mass. It can 
also lead to the discovery of B-L violation in its own right

• Experiments with intense low-energy electron or neutron beams 
can also be used to search for B-L violation

Summary
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Backup Slides  
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Neutron-Antineutron Transitions
Majorana Phase Constraints

For any fermion field

C (x)C�1 = ⌘
c

C�0 ⇤(x) ⌘ ⌘
c

i�2 ⇤(x) ⌘ ⌘
c

 c(x) ,

P (t , x)P�1 = ⌘
p

�0 (t ,�x) ,

T (t , x)T�1 = ⌘
t

�1�3 (�t , x) ,

Thus P2 (x)P�2 = ⌘2
p

 (x) but C2 (x)C�2 =  (x); T2 (x)T�2 = � (x)
The plane wave expansion of a general Majorana field  

m

is

 
m

(x) =

Z
d

3p
(2⇡)3/2

p
2E

X

s

�
f (p, s)u(p, s)e�ip·x + �f

†(p, s)v(p, s)eip·x 

Applying C and noting the Majorana relation,

i�2 ⇤
m

(x) = �⇤ 
m

(x)

yields

C 
m

(x)C�1 = ⌘
c

�⇤ 
m

(x)

Cf (p, s)C�1 = ⌘
c

�⇤f (p, s) and Cf

†(p, s)C�1 = ⌘
c

�⇤f

†(p, s)
Since C is a unitary operator, taking the adjoint shows ⌘⇤

c

� is real.
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C, P, & T Phase Constraints 
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Majorana Phase Constraints

Under CP, we find ⌘⇤
p

⌘⇤
c

� is imaginary, or that ⌘⇤
p

is imaginary.

Under T we find that ⌘
t

� is real, whereas

CPT 
m

(x)(CPT)�1 = �⌘
c

⌘
p

⌘
t

�5 ⇤
m

(�x)

yielding
CPTf (p, s)(CPT)�1 = s�⇤⌘

c

⌘
p

⌘
t

f (p,�s)
CPTf

†(p, s)(CPT)�1 = �s�⌘
c

⌘
p

⌘
t

f

†(p,�s)

Since CPT is antiunitary, CPT = KU

cpt

, where U

cpt

denotes a unitarity
operator.
We conclude ⌘

c

⌘
p

⌘
t

is pure imaginary.
Since ⌘

p

is imaginary, ⌘
c

⌘
t

must also be real — but ⌘
c

⌘
p

itself is
unconstrained.
Since the phases are unimodular, they impact the discrete symmetry
transformation properties of B-L violating operators only.
Building a Majorana field from Dirac fields yields
 

m±(x) =
1p
2
( (x)± C (x)C�1) and � = ±⌘

c

; all our other conclusions
emerge as well.
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C, P, & T Phase Constraints

ηP∝ i   ; ηPηCηT ∝ i  
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n - n & Nuclear Stabilityn-n̄ Oscillations and Nuclear Stability
n-n̄ oscillations can be studied in bound or free systems.
New limits on dinucleon decay in nuclei have also recently been established.
[Gustafson et al., Super-K Collaboration, arXiv:1504.0104.]
16O(pp) !14 C⇡+⇡+ has ⌧ > 7.22 ⇥ 1031 years at 90% CL.
16O(pn) !14 N⇡+⇡0 has ⌧ > 1.70 ⇥ 1032 years at 90% CL.
16O(nn) !14 O⇡0⇡0 has ⌧ > 4.04 ⇥ 1032 years at 90% CL.
Note ⌧

NN

= Tnuc⌧2
nn̄

with Tnuc ⇠ 1.1 ⇥ 1025s�1

Large suppression factors appear in all such nuclear studies, making
free searches more effective.
In the case of bound n-n̄ the suppression is set by

�2

(V
n

� V

n̄

)2

the difference in nuclear optical potentials. [Dover, Gal, and Richard; Friedman and Gal, 2008]

Now 16O(n�n̄) has ⌧ > 1.9 ⇥ 1032 years at 90% CL,
yielding ⌧

nn̄

> 2.7 ⇥ 108 s. [Abe et al., Super-K Collaboration, arXiv:1109.4227.]

Cf. free limit: ⌧
nn̄

� 0.85 ⇥ 108 s at 90% C.L. [Baldo-Ceolin et al., ZPC, 1994 (ILL)]

with future improvements expected.
The nuclear suppression dwarfs that from magnetic fields.
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(at first glance)
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B � L Violation and Theories of Self-Conjugate Fermions

In attempting to rationalize the spectral pattern of the low-lying, light
hadrons, Carruthers discovered a class of theories for which the CPT
theorem does not hold. [Carruthers, 1967]

The pions form a self-conjugate isospin multiplet (⇡+,⇡0,⇡�), but the kaons
form pair-conjugate multiplets (K+,K 0) and (K̄ 0,K�).
Carruthers discovered that free theories of self-conjugate bosons with
half-integer isospin are nonlocal, that the commutator of two self-conjugate
fields with opposite isospin components do not vanish at space-like
separations. [Carruthers, 1967]

Moreover, since weak local communitivity fails, CPT symmetry is no longer
expected to hold, nor should the CPT theorem of Greenberg apply. [Carruthers,

1968; Streater and Wightman, 2000; Greenberg, 2002]

The neutron and antineutron are members of pair-conjugate I = 1/2
multiplets. The quark-level operators that generate n � n̄ oscillations would
also produce p � p̄ oscillations under the isospin transformation u $ d ,
though the latter are removed by electric charge conservation....
Ergo n-n̄ oscillations are problematic in pure QCD in the isospin limit.
[SG and Yan, 2016]
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B-L Violation & Self-Conjugate Fermions
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B-L Violation & n-   TransitionsuB � L Violation and n-n̄ Oscillations

It has long been thought that n-n̄ oscillations could shed light on the
mechanism of

Baryogenesis [Kuzmin, 1967]

Neutrino mass [Mohapatra and Marshak, 1980]

The observation of n-n̄ transformations would reveal that B � L is indeed
broken.
Extracting the scale of B � L breaking from such a result can be realized
through a matrix element computation in lattice QCD. There has been much
progress towards this goal.
[Buchoff, Schroeder, and Wasem, 2012; Buchoff and Wagman, 2016; Syritsen, Buchoff, Schroeder, and Wasem, 2016]

In contrast to proton decay, n-n̄ probes new physics at “intermediate” energy
scales. The two processes can be generated by d=6 and d=9 operators,
respectively.
Crudely, ⇤

p decay

� 1015 GeV and ⇤
nn̄

� 105.5 GeV.
B-L violation at such intermediate energy scales can have rich implications;
e.g., in left-right symmetric models, successful leptogenesis requires that n-n̄
oscillations be unobservably small.
[e.g., Dev, Lee, Mohapatra, 2014]
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Observing a neutron-antineutron transition
would show that B-L violation does exists at an
intermediate (~100 TeV) scale…. 23



The Standard Model (SM) cannot explain the origin of the 
cosmic baryon asymmetry, dark matter, or dark energy. 

B violation plays a role in at least one of these puzzles.

Although B violation appears in the SM (sphalerons), 
[Kuzmin, Rubakov, & Shaposhnikov, 1985]

we know nothing of its pattern at accessible energies. 

Do processes occur with |ΔB|=1 or |ΔB|=2 or both?
  [Marshak and Mohapatra, 1980; Babu & Mohapatra, 2001 & 2012; Arnold, Fornal, & Wise, 2013]

The SM conserves B-L, but does Nature?

Why Search for       ?     

If neutron-antineutron oscillations, e.g., are observed,  
then B-L is broken, and we have found physics BSM!

u-u
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