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MicroBooNE

MicroBooNE is an important step in LArTPC development in preparation for
DUNE!

Physics Goals of MicroBooNE:

* Investigate the low-energy excess
observed by the MiniBooNE experiment.

29 m ° Perform novel neutrino-LAr cross
section measurements.

MicroBooNE Detector



Detector Physics With
MicroBooNE

MicroBooNE serves as a laboratory to study a number of LArTPC
detector effects:

Charge Readout Electron Lifetime

Run 3493 Event 41075, October 23*¢, 2015

Calibrating and studying all are important for accurate event reconstruction!



Calibration Sample:
Through-Going Muons

We currently have two methods for Tracks Missing TPC

tagging through-going muons for Tracks Intersecting TPC
detector calibration:

1. MuCS (Muon Counter System)

J. Inst. 12 P12030 (2017): http://iopscience.iop.org/article/
10.1088/1748-0221/12/12/P12030

2. Anode-Piercing/Cathode-Piercing

Tracks

MicroBooNE Public Note #28: http://microboone.fnal.gov/wp-

content/uploads/MICROBOONE-NOTE-1028-PUB.pdf —



http://iopscience.iop.org/article/10.1088/1748-0221/12/12/P12030
http://iopscience.iop.org/article/10.1088/1748-0221/12/12/P12030
http://iopscience.iop.org/article/10.1088/1748-0221/12/12/P12030
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: Reconstructed Track

Through-going cosmic ray tracks must
have full 3D information available
to be used in calibrations.

: T - Corrected Track

Cosmic ray tracks that pierce both the anode and the cathode can also be used
for detector calibrations.



Calibration Sample:
Stopping Muons

Stopping muons have a distinct energy loss profile in liquid argon.

Therefore, with a pure sample of these tracks, we can compare to
lookup tables to calibrate the dE/dx extrapolation of our detector.
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Charge Readout

Calibration

Charge Readout

When ionization electrons drift to the anode wire
planes, effects of charge readout on the planes
must be calibrated for first.

These include:

e Detector Noise (Inherent & TPC-Induced)
e Charge Exchange Between Neighboring Wires

MicroBooNE is the first above-ground LArTPC
operating in a neutrino beam!
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Noise Filtering

A paper on limiting detector noise in
MicroBooNE has been published

JINST 12, PO8003 (2017): http://iopscience.iop.org/

in JINST!

article/10.1088/1748-0221/12/08/P08003
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Signal Processing |.

First signal processing This paper:
paper has been accepted o describes field & electronics
for publication by JINST! response simulation.

e presents a process for identifying
the region of interest (ROI) a signal may
be located within.

arXiv:1804.02583: https://arxiv.ora/pdf/
1802.08709.pdf

(April 9th, 2018)
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Signal Processing Il.

Raw ~__After noise removal After 1-D deconvolution  After 2-D deconvolution

Second signal .. MicroBooNE
processing paper has
been accepted for

publication by JINST!
arXiv:1802.08709: https://arxiv.org/abs/ E
1804.02583
(April 10th, 2018) b st s
Effects of Data-Driven Signal === = | RS &
Processing e e
1D deconvolution, 30° < 6, < 50° 2D deconvolution, 30° < 8, < 50°
Charge Matching Across Wire : 1 Eess
E — 'E 0.06—
Planes < 1 o
These results are pioneering B R P S R R Y R R

for the LArTPC community!
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Space Charge
Effects (SCE)

Charge Readout Electron Lifetime

Space charge effects are the buildup of positive ions in the TPC active
VOlume, diStOrting the electric field. MuCS-tagged tracks

'§'150:—"““ I

[T) icroBooNE Preliminary -

>1000 | T
Twofold Result of Space Charge Effects 50

This worsens track reconstruction as a result.
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Simulation of
Space Charge Effects

Effects on track reconstruction from space charge effects were integrated into

our last simulation campaign (Early 2017).

Note the different color scales
Xreco = Xiypue [CM]: Z=5.18 m Xreco — Xiue [CM]: Z2=0.10 m Of the pIOtS'
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MicroBooNE Public Note #18: http://microboone.fnal.gov/wp-content/uploads/MICROBOONE-NOTE-1018-PUB.pdf

(November 29th, 2016)
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A data-driven correction for the MuCS-tagged tracks was demonstrated in
Public Note #18.

A full data-driven calibration is underway, both for simulation and data.
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Electron Lifetime
Measurement

Charge Readout Electron Lifetime
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The concentration of water and oxygen in MicroBooNE affect the
electron lifetime in the detector.
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Electron Lifetime
Measurement
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MicroBooNE Public Note # 26: http://

microboone.fnal.gov/wp-content/uploads/
MICROBOONE-NOTE-1026-PUB.pdf
(August 30th, 2017)

TPC Drift Time = 2.3 ms
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Charge Readout

Calorimetry

Electron Lifetime Calorimetry

Median dQ/dx (ADC/cm)
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We have to perform a calibration on the LArTPC energy reconstruction

to account for convolved detector effects.
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MicroBooNE is releasing results

with a data-driven calibration
for uniform energy-deposition
in the LArTPC imminently.

Effective dE/dx is critical for a
LArTPC experiment to achieve
its physics goals.

This calibration is being utilized

In results that MicroBooNE will
share at conferences this
summer.

Calorimetry
Calibration

dE/dx Calibration Results
From ArgoNeuT
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Calorimetry
Callbratlon

This calibration proceeds in two
steps:

1. dQ/dx Calibration /’

e (Calibrate wire coordinate-
dependent effects.

Plane 2

MicroBooNE Preliminary
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e (Calibrate drift direction-
dependent effects.
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Summary

MicroBooNE'’s liquid argon is very pure.
The noise filtering/signal processing calibrations are complete.
A full SCE calibration is coming soon.

We are simultaneously working to calibrate fundamental
detector effects.

Publications of MicroBooNE calibrations inform future LArTPC
experiments (protoDUNE, ICARUS, SBND, DUNE).

Thank you!

19



Backup



Anode-Piercing/
Cathode-Piercing Tracks

Anode-Piercing Tracks in Off-Beam Cosmic Events: Track-Hit Density Per Event  Cathode-Piercing Tracks in Off-Beam Cosmic Events: Track-Hit Density Per Event
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The coverages of anode-piercing and cathode-piercing tracks are biased because they
must pierce that respective side of the TPC.
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Anode-Cathode
Crossing Tracks

MicroBooNE Preliminary
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Anode-cathode crossing tracks are selected according to their I’-projected length.

This distribution has contingency ([250 cm, 270 cm]) to account for reconstruction
effects.



“Log 10” Scale

i = electrons per 0.5 ps

Hog,(i - 10°), ifi > 1x 1075,
i in “Log 10” =<0, if —1Ix107°<i<1x107>,
—logo(—1-i-10°) ifi <-1x107.
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ROI Finding
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No low-frequency filter Tight low-frequency filter Loose low-frequency filter

Two filters intended to remove low-frequency components of the input signal
are used to find the signal Regions of Interest (ROIs). They are used on the induction
planes only.
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2D Deconvolution
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In our signal processing, we now use a 2D filter, in time and in the wire coordinate.

Previously, only 1D convolution in time was used.



Data-Driven
MuCS Correction

Ycorr = Yreco — Ay(ajrecoa yreco)

A o (ftop(xreco) — ytop) g(ytrue)a 1f Yreco > 0
y(xrecm ytrue) — .
(fbottom(xreco) _ ybottom) g(ytrue)a 1f Yreco < 0

ftop(Treco) (fbottom (Treco)) 1 @ quartic polynomial that gives the correction
that must be applied as a function of .

g(Ytrue )t is a scaling function that describes the change
in the correction with 1.
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dE/dx Calculation

We calculated dE/dx from dQ/dx by using the following
formula:

(%)calibrated Bpwv?lon
(d—E) lib d_exp( & ) T«
dZE calibrate 5_19
pE
C — Calibration constant to convert ADC values to number of electrons

Wion — 23.6 x 10°% MeV /electron (work function of argon)
3 — 0.273 kV/cm (MicroBooNE drift electric field)
p —1.38 g/cm? (liquid argon density at a pressure 18.0 psia)

,5 e and (v were determined by ArgoNeuT, which operated at a drift electric
field of 0.481 kV/cm.
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