HAYSTAC

Haloscope At Yale Sensitive To Axion CDM Status, Results & Plans

> CIPANP 2018 May 29, 2018

Karl van Bibber University of California Berkeley

- I. Preliminaries on the Microwave Cavity Experiment
- II. HAYSTAC Technical Description
- III. Phase I Scientific Results
- IV. Phase II Squeezed-Vacuum State Receiver

HAYSTAC

V. Summary Comments

Principle of experiment, S/N, Detectability

Axion detection - quantitative details

Cavity Bandwidth: $\Delta v_c / v_c = Q^{-1} \sim 10^{-4}$ Axion Bandwidth: $\Delta v_a / v_a \sim \beta^2 \sim 10^{-6}$

HAYSTAC

Conversion Power:

$$P \sim g_{a\gamma\gamma}^2 \left(\rho_a / m_a \right) B^2 Q_c V C_{nm\ell} ~~ 10^{-23} \, \text{watt}$$

Signal to Noise Ratio:

$$\mathsf{SNR} = rac{\mathsf{P}}{\mathsf{k}\mathsf{T}_{\mathcal{S}}}\sqrt{rac{t}{\Delta v_a}}$$

System Noise Temperature:

$$kT_S = h\nu \left(\frac{1}{e^{h\nu/kT} - 1} + \frac{1}{2}\right) + kT_A$$

Note $T_S \approx T + T_A$, for T >> hv

Linear amplifiers are subject to the Standard Quantum Limit

$$T_N > T_{SQL}$$
 where $k_B T_{SQL} = h v$

v [GHz]	m _a [μeV]	T _{SQL} [mK]
0.5	2.1	24
5	20.7	240
20	82.8	960

The SQL can be evaded by

HAYSTAC

- Squeezed-vacuum state receiver (e.g. GEO, LIGO)
- Single-photon detectors (e.g. qubits, bolometers)

and with it is

History, Motivation & Philosophy

- Concept born at Sikivie festschrift in 2010
- Serves both as Data Pathfinder & Innovation Testbed in the 10-50 μeV mass range
- Develop new cavity & amplifier technologies in the 3-12 GHz range
- Small, agile platform that can be quickly reconfigured to try new things
- Work with the greatest degree of informality; no formal project management, etc.

The Team (current plus alumni)

Yale University

Steve Lamoreaux, Reina Maruyama, Yulia Gurevich, Ling Zhong, Danielle Speller, Ben Brubaker, Kelly Backes, Yong Jiang, Sid Cahn

UC Berkeley

Karl van Bibber, Maria Simanovskaia, Samantha Lewis, Alex Droster, Al Kenany, Nicholas Rapidis, Jaben Root, Isabella Urdinaran, Tim Shokair

CU Boulder/JILA

Konrad W. Lehnert, Daniel Palken, William F. Kindel, Maxime Malnou, M.A. Anil

Lawrence Livermore National Lab

Gianpaolo Carosi

The Hardware

Josephson Parametric Amplifier

Microwave Cavity (copper)

³He/⁴He Dilution Refrigerator

9.4 Tesla, 10 Liter Magnet

HAYSTAC

Microwave Cavities

- Annular cavity, cam-tuned, annealed Cu on S.S.
- Tunable over 3.6 5.8 GHz
- Attocube for rotary motion, stepping motors for linear

Quantum Limited Josephson Parametric Amplifiers

- 20 dB gain, quantum limited
- Tunable over 4.4 6.5 GHz
- Persistent coils field cancellation

HAYSTAC

9

A major challenge – magnetic shielding of the JPA

What the data look like

• $T_{SYS} \sim 3 \times T_{SQL}$ for first run; 'hot rod' implicated, thermal link improved

HAYSTAC

• $T_{SYS} \sim 2 \times T_{SQL}$ for second run recently published

Results from Phase I Operation (2016-17)

L. Zhong et al., Phys. Rev. D 97 (2018) 092001

HAYSTAC

Phase II: Squeezing – Circumvent vacuum fluctuations to scan faster

JILA mock haloscope for R&D for squeezing studies with 7 GHz Nb cavity Actual system to deploy July 2018 in HAYSTAC Accelerating dark-matter axion searches with quantum information technology Zheng *et al.*, arXiv:1607.02529v1

HAYSTAC

the and the

Results from the mock haloscope with squeezing

HAYSTAC

The vacuum variance has been reduced by 4 dB

Overcouple & squeeze: search many bare cavity linewidths simultaneously

(These calculations include a realistic 32% power loss)

We are projecting an initial ×2.3 speed up for our Phase II run

HAYSTAC

Summary comments

- After the inaugural squeezed-vacuum state run, we will go to higher frequencies
- A large volume 6 12 GHz (25 50 $\mu eV)$ cavity with high quality factor and form factor is being readied for late 2018
- R&D on tunable Photonic Band Gap resonators is ongoing to eliminate the forest of TE modes & thus mode-crossings
- R&D is beginning for single-quantum detection, both qubit- and Rydberg-atom based
- HAYSTAC has proven to be a nimble & effective platform

The microwave cavity experiment

Photonic Band Gap Resonators

Photonic Band Gap Structures

Photonic Band Gap Structures

- Resonator: defect in lattice confines disallowed modes
- All other modes
 propagate out
- Can have very high Q

Motivation

- TE modes don't tune, causing mode crossings
- PBG would confine TM modes while TE modes leak out

Contrary States

Lattice parameters

- Made from 7075 aluminum
- 10 cm length
- Quarter inch rods (3.175 mm)
- a/b = 0.43
- With tuning rod, tunes from 7.5 to 9.5 GHz

Tuning mechanism

- First test: single off-axis tuning rod
- Alumina axles

Sear Star

Fixed frequency results

