Nucleon electromagnetic form factors in dispersively improved chiral EFT

C. Weiss (JLab), CIPANP 2018, Palm Springs, CA, 02-Jun-18

Jefferson Lab

Summary: New method for calculating/analyzing nucleon FFs combining χ EFT and dispersion theory

Implements analyticity in momentum transfer t

Includes $\pi\pi$ rescattering and ρ resonance through unitarity

Enables predictive calculations, controlled accuracy

Outline

Method: Dispersive representation, elastic unitarity, $\chi {\rm EFT}$

Results: Spectral functions, form factors

Applications: Proton radius extraction, other FFs

J. M. Alarcon, C. Weiss, PRC 97, 055203 (2018); J. M. Alarcon, C. Weiss, arXiv:1803.09748;

J. M. Alarcon, A. N. Hiller Blin, M. Vicente Vacas, C. Weiss, NPA 964, 18 (2017)

Method: Dispersive representation

• Dispersive representation

$$F_i(t) = \int_{t_{\text{thr}}}^{\infty} \frac{dt'}{\pi} \frac{\text{Im } F_i(t')}{t' - t - i0}$$

Expresses analytic structure of $F_i(t)$

• Spectral functions $\operatorname{Im} F_i(t)$

Current \rightarrow hadronic states $\rightarrow N\bar{N}$

Processes in unphysical region $t < 4M_N^2$

Spectral functions to be provided by theory Frazer, Fulco 1960; Höhler et al 1975+

 $\pi\pi$ (incl. ρ), $4\pi, K\bar{K}, ...$ 3π (incl. ω), $K\bar{K}$ (incl. ϕ), ... Isovector: Isoscalar:

Method: Spectral functions on $\pi\pi$ **cut**

• Elastic unitarity relation

 $F_{\pi}(t)$ timelike pion FF, $\Gamma_i(t)$ partial-wave amplitude $\pi\pi \to N\bar{N}$

Amplitudes have same phase from $\pi\pi$ rescattering — Watson's theorem

• Factorized representation (N/D method)

 Γ_i/F_{π} free of $\pi\pi$ rescattering \rightarrow calculate in χ EFT, well convergent $|F_{\pi}|^2$ includes $\pi\pi$ rescattering, ρ resonance \rightarrow take from e^+e^- data, LQCD

• New $\chi \text{EFT-based}$ approach

Method: Chiral EFT

$$--+$$
 $+$ N2LO

• Relativistic χEFT

Expansion in $\{M_\pi,k_\pi\}/\Lambda_\chi$

Include Δ isobar

- Calculation of $\Gamma_i(t)/F_{\pi}(t)$ LO: Born terms + Weinberg-Tomozawa NLO: Contact term in $\Gamma_i(t)$ N2LO: Contact term and pion loops Good convergence
- Pion timelike FF $|F_{\pi}(t)|^2$

Measured accurately in $e^+e^- \to \pi^+\pi^-$

Results: Spectral functions

• Spectral functions on $\pi\pi$ cut

Include ho resonance through $|F_{\pi}(t)|^2$

Good agreement with Roy-Steiner analysis Hoferichter et al 2017

• Qualitative improvement compared to traditional $\chi {\rm EFT}$

 $\pi\pi$ rescattering effects included

Alarcon, Weiss, arXiv:1803.09748

Results: Form factors

- Form factors evaluated using DR
 - $\pi\pi$ isovector spectral function calculated in ${\rm DI}\chi{\rm EFT}$

High-mass states described by effective pole, strength fixed by sum rules (charges, radii)

• Excellent agreement with data

Not fit, but dynamical prediction. Theoretical uncertainty estimates

Applications: Proton radius extraction

Data at
$$Q^2 > 0 \quad \leftrightarrow$$
 Slope at $Q^2 = 0$
Several methods \rightarrow review in this session

Zhihong Ye, Higinbotham, Alarcon, CW; in progress Global fit with fixed radius adapted from Ye et al 2017 • Analyticity implies correlations Use data at "larger" $Q^2 \sim$ few 0.1 GeV² to constrain slope at $Q^2 = 0$

Complement "extrapolation" methods

• $DI\chi EFT$ -base extraction

Obtain $r_p = 0.85(1)$ fm (preliminary)

Quantified thy and exp uncertainties

7

Applications: Higher derivatives

Alarcon, Weiss, PRC 97, 055203 (2018)

• Form factor derivatives from DR

$$\left. \frac{d^n G_i^V(t)}{dt^n} \right|_{t=0} = \int_{4M_\pi^2}^\infty \frac{dt'}{\pi} \, \frac{\mathrm{Im} \, G_i^V(t')}{t'^{n+1}}$$

- Two dynamical scales
 - $4M_{\pi}^2$ two-pion threshold
 - M_{ρ}^2 maximum of spectral function

Relative weight depends on \boldsymbol{n}

Unnatural size of higher derivatives
Model-independent prediction
Could be tested in polynomial fits

Applications: Densities, scalar FF

- Nucleon transverse charge/magnetization densities Alarcon, Hiller Blin, Vicente Vacas, Weiss, NPA 96, 18 (2017); Alarcon, Weiss, in progress
- Nucleon scalar FF Alarcon, Weiss, PRC 96, 055206 (2017)

Extensions

- FFs with 3π cut, e.g. isoscalar vector FF Use methods of 3-body unitarity, presently being developed
- Resonance transition FFs, e.g. $N \to \Delta$
- Methodological extension: Timelike pion FF $|F_{\pi}(t)|^2$ from Lattice QCD

Summary

DIχEFT new method for calculating ππ spectral functions of nucleon FFs
Uses elastic unitarity and N/D method
Includes ππ rescattering in *t*-channel through timelike pion FF

Overcomes main limitation of traditional $\chi {\rm EFT}$

- Excellent description of spacelike nucleon EM FF data up to $Q^2 \sim 1~{\rm GeV^2}$ Implements analyticity

Provides theoretical uncertainty estimates

- Proton radius extraction from moderate– Q^2 data
- Many applications