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• HERA e+p data & modeling p+p/A & A+A collisions at small-x

• Correlation measurements & phenomenology at RHIC/LHC 

• Towards phenomenology of EIC : can lessons from RHIC/LHC help ? 
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The reactions/collisions at relativistic energies (E>>m)
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At small-x →universal framework for e+p, e+A to p+p, p+A & A+A

The landscape of QCD



Universal approach at small-x
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Where are the connections ? 
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Heavy ion physics@RHIC/LHC: uncertainties
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Biggest uncertainty : initial stages of the colliding nuclei

Longitudinal structure : we have only started to explore
P.Tribedy, Initial Stages, Sept 18-22, 2017 42

The path "FORWARD"

New measurements at RHIC extend beyond the conventional 2-
particle correlations to map the 3D structure of initial state & η/s(T) 

2015-18

∼ 1

αS

EIC→ ultimate machine, how can we use the lessons from RHIC/LHC 

Transverse geometry : our understanding has improved over the years



Experimental observables in p+p/A,A+A
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Long range azimuthal correlations : Ridge
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Ridge phenomenon (most striking and widely studied):
Di-hadron correlations in relative pseudorapidity (Δη) & azimuth (Δφ) 

High multiplicity p+p/A  → strikingly similar to A+AP Tribedy, Rutgers Nuclear Physics Seminars, 2018 8
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Ridge across different collision systems

No ridge appears in e+e, e+p, and 
low multiplicity p+p/A collisions

P Tribedy, Rutgers Nuclear Physics Seminars, 2018 8
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Multiplicity-dependent c1{2} and c2{2} with increasing ⌘-separation
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The qualitative picture : what drives ridge ?

 Long-range rapidity correlations  →  generated at early times 

Causality limits signals from different τ to spread at different Δη

Dynamics of early time spread over wide range of rapidity  

Dumitru et al 
0804.3858

11
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Fragmentation Transport, 
Hydrodynamic

Position space correlations

Initial state correlations (colliding hadrons/nuclei)

Momentum space correlations

(Mini-) jets, 
n-parton correlations Initial spatial anisotropy

Experimentally observed correlations (both should contribute) 16
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A new Monte-Carlo event generator : CGC-Lund (CGC-PYTHIA)

CGC + Lund : Fragmentation of strings

IP-Glasma : momentum distribution of gluons 
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Colliding protons at small-x
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All bold face characters are transverse two-vectors: r is
the vector between the dipole quark and anti-quark, b the
impact parameter (distance from the center of the pro-
ton to the center-of-mass of the dipole), � = (P 0 � P )?
is the transverse momentum transfer. z is the fraction
of the virtual photon longitudinal momentum carried by
the quark. The indices T, L refer to the photon polar-
ization. In this work we only consider transverse polar-
ization as we study photoproduction (Q2 = 0) events.
The large J/ mass provides the scale that suppresses
non-perturbative contributions from large dipole sizes.
The overlap between the virtual photon and vector me-
son wave functions is given by  ⇤ V . The virtual photon
wave function  , describing �⇤ ! qq̄ splitting, can be
computed from perturbative QED, but the formation of
a vector meson from a color dipole is a non-perturbative
process and must be modeled. In this work, we use the
Boosted Gaussian wave function parametrization [34].

In coherent di↵raction, the target proton remains in-
tact and the cross section can be written as [34]

d��⇤p!J/ p

dt
=

1

16⇡

��hA(xP, Q
2,�)i

��2 . (3)

The brackets hi refer to an average over target configura-
tions. As we are only interested in high energy scattering,
the small-x structure of the proton dominated by gluons
is probed. The coherent cross section is sensitive to the
average gluon density, as it is obtained from the aver-
aged scattering amplitude. On the other hand, when the
proton breaks up (but the event is still di↵ractive, and
there is no exchange of color charge between the proton
and the vector meson), the incoherent cross section is
obtained as a variance (see e.g. Refs. [21, 28]):

d��⇤N!J/ N⇤

dt
=

1

16⇡

⇣D��A(xP, Q
2,�)

��2
E

�
��hA(xP, Q

2,�)i
��2
⌘
. (4)

The dipole-target cross section �p
dip encodes all the

QCD dynamics of the scattering process. It is related
to the imaginary part of the forward dipole-target scat-
tering amplitude N via the optical theorem:

d�p
dip

d2b
(b, r, xP) = 2N(r,b, xP). (5)

The dipole amplitude N in principle satisfies the small-x
JIMWLK [35–38] or Balitsky-Kovchegov (BK) [39, 40]
evolution equation. However, knowledge of the impact
parameter dependence of N is crucial in order to evaluate
the di↵ractive scattering amplitude (2), and the impact
parameter dependent JIMWLK and BK equations de-
velop unphysical Coulomb tails that should be regulated
by confinement scale physics [41, 42]. Thus, we choose
to use the impact parameter dependent saturation model
(IPsat), as well as the IP-Glasma model [43, 44] to de-
termine the dipole amplitude.

In the IPsat model the dipole cross section is given
by [45]

d�p
dip

d2b
(b, r, xP) = 2

⇥
1 � exp

�
�r2F (xP, r)Tp(b)

�⇤
. (6)

Here Tp(b) is the proton’s spatial profile function

Tp(b) =
1

2⇡Bp
e�b2/(2Bp) . (7)

We have checked that using an exponential distribution
increases the coherent cross section for |t| > 1GeV2, with
only small changes for smaller |t|. For the e↵ect of di↵er-
ent profile functions see [46]. The function F is propor-
tional to the DGLAP evolved gluon distribution [47],

F (xP, r
2) =

⇡2

2Nc
↵s

�
µ2

�
xPg

�
xP, µ

2
�
, (8)

with µ2 = µ2
0 + 4/r2. The proton width Bp = 4 GeV�2,

µ2
0 and the initial condition for the DGLAP evolution of

the gluon distribution xPg are parameters of the model.
They were determined in a successful fit of the IPSat
model to HERA DIS data in [6]. We use a charm mass
of mc = 1.4 GeV.
In the IP-Glasma model [43], the dipole ampli-

tude at a given xP, N(x � y, (x + y)/2, xP) = 1 �
Tr (V (x)V †(y))/Nc can be calculated directly from the
Wilson lines V (x) of the proton. They are obtained af-
ter sampling color charges ⇢(x�,x) from the IPsat color
charge distribution (proportional to the saturation scale
Qs(xP), defined using the IPsat dipole amplitude [48])
and solving the Yang-Mills equations for the gluon fields:

V (x) = P exp

✓
�ig

Z
dx� ⇢(x�,x)

r2 +m2

◆
. (9)

Here P indicates path ordering and m is an infrared cut-
o↵ that will a↵ect the proton size and consequently the
di↵ractive cross sections. Calculations are performed on
a lattice with spacing a = 0.02 fm. We have checked that
smaller lattice spacings do not alter the results. For more
details see [48].
Phenomenological corrections In the IPsat model, the

cross sections are obtained by replacing the dipole am-
plitude with its imaginary part. Correcting them by
a factor of (1 + �2), with � = tan⇡�/2 and � =

(d lnA�⇤p!J/ p
T,L )/(d ln 1/xP), accounts for the real part

[34]. The real part correction is of the order of 10% in the
kinematical range considered in this work and depends
weakly on |t|. In the IP-Glasma the dipole amplitude is
used directly and we do not include this correction.
The skewedness correction takes into account the o↵-

diagonal nature of the gluon distribution involved in
the process. In the linearized approximation, where
two gluons are exchanged with the target, these glu-
ons carry di↵erent longitudinal momentum fractions x1

Input : HERA DIS e+p coherent diffractive cross section :

Momentum Space Coordinate Space

Ridge→ long-range correlations →  driven by initial state effects

Ridge probes the wave function of colliding hadrons/nuclei
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Colliding nuclei at small-x : IP-Sat/Glasma 

IP-Sat : Color charge distribution inside Nuclei

IP-Sat (Impact Parameter dependent saturation) parametrization HERA
DIS ! proton-dipole scattering matrix Sp

dip(r?, x ,b?) ⇠ exp
�
�r2Q2

sp/2
�

The nuclear scattering matrix is obtained as

SA
dip(r?, x ,b?) =

AY

i=0

Sp
dip(r?, x ,b?)

S
i

p

i ! nucleons are distributed according to Fermi distribution.

SA
dip ! distribution of nuclear saturation scale Qs(b?, x) solving :

SA
dip(r?= rS , x ,b?) = exp(�1/2) =) Q2

s =
2

r2S

Iteratively solving x = Qs (b?,x)p
s

! Qs(b?,
p
s)

Lumpy color charge density distribution g2µ(x?)⇠Qs(x?)

Kowalski, Lappi, Venugopalan 0705.3047

Lappi, arXiv:0711.3039, 1104.3725

Prithwish Tribedy Quark Matter 2014, Darmstadt, Germany 6/23
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Nucleus → multiple scattering centers (from Glauber) + IP-Sat :  

Q2
s,A(

√
s) ∼ A1/3Qs,proton(

√
s)→ less boost is needed to saturate nuclei 

R ∼ A1/3

One obtains saturation scales for different configurations of a nucleus
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• Fundamental objects are Color Charge 
density matrices ρa(x⊥,Y), local Gaussian 
distribution W[ρ]  (MV-Model)  

• Color field before collisions : solving Yang 
Mills equations for each configuration of 
source ρ(x⊥) & current Jν = δν ρ(x⊥)

• Compute & evolve the color fields after 
collisions : 

Classical Yang-Mills approach on 2+1D lattice
Schenke, Tribedy, Venugopalan 1202.6646

E-by-E solve CYM for two colliding nuclei : [Dµ, Fµ⌫ ] = J
⌫

TPSC%seminar,%IIT%Roorkee%%29/11/12% 39%

Color%Glass%Condensate%

where

J+ = �(x�)⇢1(x?)

J� = �(x+)⇢2(x?)

J i = 0 (11)

and we have restricted ourselves to work in a gauge where the link operators along

the particle trajectories drop out.

Before the collision takes place, we find a solution of the equations of motion

to be

A+ = 0

A� = 0

Ai = �(x�)�(�x+)↵i
1(x?) + �(x+)�(�x�)↵i

2(x?) (12)

This is a solution of the Yang-Mills equations in all of space-time except on or

within the forward light cone, as shown in Fig. 3. In the forward light cone, we

1 2

3
x+x-

x0

x3

Fig. 3: Regions with di�erent

structures of the gauge poten-

tial:

In regions 1 and 2 we have the

well known one nucleus solu-

tions ↵1,2. While in the back-

ward light cone there the gauge

potential is vanishing we have

a nontrivial solution in the for-

ward lightcone, region 3

must add in extra pieces in order to have a solution. This will be done below. The

13

J+ = �(x�)⇢1(x?) J� = �(x+)⇢2(x?)

Ax0=0 = A(A) + A(B)

The%field%a|er%collision:%

Once%Aμ%%a|er%collision%is%known,%%
we%can%calculate:%
%
Fμν%%&%StressVEnergy%Tensor%(Tμν),%
Hamiltonian%(H). 
%
Final%energy%density%%(=%T00)%
~%E2%+%B2%%
%
%%

Solve%YangVMills%equa1on%for%
individual%nuclei%on%2+1%D%latce.%

Produced%par1cle%mul1plicity%or%number%density%=%n(k)%%can%be%calculated%by%assuming%
%a%massless%dispersion%rela1on%ω(k)%=%k.%

H ⇠ n(k)�(k)

Schenke,%PT,%Venugopalan%PRC#86,#034908#(2012)%

CGC% CGC%

Glasma%

Color charge density for one A+A collision

Two point correlator for one A+A collision

⇢(x?) sampled from local Gaussian distribution W [⇢]
⌦
⇢a(x?)⇢b(y?)

↵
= �ab�2(x?�y?)g2µ2(x?)

lattice implementation Krasnitz, Venugopalan, hep-ph/9809433 Lappi, hep-ph/0303076
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with the color current

J
⌫ = �

⌫±
⇢A(B)(x

⌥
,x?) (6)

generated by a nucleus A (B) moving along the x
+ (x�)

direction (the upper index is for nucleus A). In (6) we
have assumed that we are in a gauge where A

⌥ = 0
such that temporal Wilson lines along the x

+ (x�) axis
become trivial unit matrices.

The solution to Eq. (5) is most easily found in Lorentz
gauge @µA

µ = 0, where the equation becomes a two-
dimensional Poisson equation

�r2
?A

±
A(B) = ⇢A(B)(x

⌥
,x?) , (7)

whose solution can formally be written as

A
±
A(B) = �⇢A(B)(x

⌥
,x?)/r2

? . (8)

It will be more convenient to work in light-cone gauge
A

+(A�) = 0 when computing the gluon fields after the
collision. The solution in this gauge is obtained by gauge
transforming the result in Lorentz gauge using the path-
ordered exponential

VA(B)(x?) = P exp

✓
�ig

Z
dx

� ⇢
A(B)(x�

,x?)

r2
T +m2

◆
, (9)

giving the pure gauge fields [10, 33, 34]

A
i
A(B)(x?) = ✓(x�(x+))

i

g
VA(B)(x?)@iV

†
A(B)(x?) , (10)

A
�(A+) = 0 . (11)

The infrared regulator m in Eq. (9) is of order ⇤QCD and
incorporates color confinement at the nucleon level. 4

Physically, the solution (10,11) is a gauge transform of
the vacuum on one side of the light-cone and another
gauge transform of the vacuum on the other side. We
have chosen one of them to be zero as an overall gauge
choice. The discontinuity in the fields on the light-cone
corresponds to the localized valence charge source [5].

The initial condition for a heavy-ion collision at time
⌧ = 0 is given by the solution of the CYM equations
in Fock–Schwinger gauge A

⌧ = (x+
A

� + x
�
A

+)/⌧ = 0,
which is a natural choice because it interpolates between
the light-cone gauge conditions of the incoming nuclei. It
is also necessary for the Hamiltonian formulation that we
adopt (gauge links in the temporal (⌧) direction become

4 Other prescriptions which do not explicitly introduce a mass [35]
are feasible but they all inevitably involve introducing a nucleon
size scale. This is because there is a Coulomb problem in QCD
which is cured only by confinement. The presumption here is
that physics at high energies is dominated by momenta ⇠ Qs

and is insensitive to infrared physics at the scale m. From a
practical point of view, we observe that our results are weakly
sensitive to small variations in the scale m.

unit matrices in this gauge). It has a simple expression
in terms of the gauge fields of the colliding nuclei 5[5, 36]:

A
i = A

i
(A) +A

i
(B) , (12)

A
⌘ =

ig

2

h
A

i
(A), A

i
(B)

i
, (13)

@⌧A
i = 0 , (14)

@⌧A
⌘ = 0 (15)

In the limit ⌧ ! 0, A⌘ = �E⌘/2, with E⌘ the longitu-
dinal component of the electric field. At ⌧ = 0, the only
non-zero components of the field strength tensor are the
longitudinal magnetic and electric fields, which can be
computed non-perturbatively. They determine the en-
ergy density of the Glasma at ⌧ = 0 at each transverse
position in a single event [8, 9].
The Glasma fields are then evolved in time ⌧ accord-

ing to Eq. (5). Over a time scale ⇠ 1/Qs the fields are
strong and the system is strongly interacting. Due to the
expansion of the system, the fields become weak after
this time scale and the system begins to stream freely.
Incorporation of quantum fluctuations in a 3+1 dimen-
sional CYM simulation will however lead to instabilities,
which will modify this behavior and potentially keep the
system strongly interacting for a more extended period
of time [37, 38]. As noted previously, these instabilities
could isotropize the system, naturally leading to a tran-
sition to viscous hydrodynamic behavior. The detailed
study of instabilities and the origin of isotropization is
a complex task and beyond the scope of this work. For
recent progress in this direction see [28, 39–41]. We em-
phasize that key aspects of this work, the event-by-event
determination of color charge distributions and solutions
of Yang–Mills equations will be essential ingredients in
these generalized frameworks as well. In particular, in
the framework of Ref. [28], the additional ingredient is
repeated solution of the CYM equations with slightly
di↵erent seeds drawn from an initial spectrum of fluc-
tuations.

III. NUMERICAL COMPUTATION

We will now discuss the numerical implementation of
the continuum discussion in the previous section. Be-
cause the classical gauge field configurations are boost
invariant, our computations are carried out on 2+1-
dimensional lattices. From the nuclear color charge den-
sity squared, determined as described in the previous sec-
tion, we can sample independent color charges ⇢

a(x?)
(suppressing x from now on) according to

h⇢ak(x?)⇢
b
l (y?)i = �

ab
�
kl
�
2(x? � y?)

g
2
µ
2
A(x?)

Ny
, (16)

5 The metric in the (⌧,x?, ⌘) coordinate system is gµ⌫ =
diag(1,�1,�1,�⌧2) so that A⌘ = �⌧2A⌘ . The ± components
of the gauge field are related by A± = ±x±A⌘ .
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E-by-E soln. of CYM equation on 2+1D lattice ! F
µ⌫(⌧, x?, ⌘).
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FIG. 1: Linearly polarized and unpolarized WW gluon distributions versus transverse momentum q? at di↵erent rapidities Y .
Transverse momentum is measured in units of the saturation momentum Qs(Y ). The curves correspond to evolution at fixed
↵s = 0.15.

variant mass is given by M = P?/
p
z(1� z). Also,

✏2f = z(1 � z)Q2 with Q2 of order P 2
?. Here, we re-

strict ourselves to kinematic configurations where ~P? is
greater than ~q?, referred to as the “correlation limit” in
Refs. [5, 22].

In Eq. (2) � denotes the azimuthal angle between ~P?
and ~q?, respectively. We introduce the following measure
for the azimuthal anisotropy,

v2 ⌘ hcos 2�i . (4)

The average over � in this equation is performed with
the weight (1) or (2), respectively. Since

x =
1

s

✓
q2? +
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z(1� z)
P 2
?
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(5)

is independent of �, for a longitudinally/transversally po-
larized photon we have
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G(1)(x, q?)
.

(6)

The linearly polarized h(1)
? and unpolarized G(1) dis-

tributions are defined as the traceless part and the trace
of the Weizsäcker-Williams unintegrated gluon distribu-
tion, respectively:

xGij
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1

2
�ijxG(1) � 1

2

✓
�ij � 2

kikj

k2

◆
xh(1)

? . (7)

In the CGC framework the gluonic degrees of freedom at
small x are described by Wilson lines. They are path or-
dered exponentials in the strong color field of the target,

and cross sections for di↵erent observables can be related
to di↵erent correlation functions of the Wilson lines. The
Wilson line is a path ordered exponential of the covariant
gauge field, whose largest component is A+:

U(xT ) = P exp

⇢
ig

Z
dx�A+(x�,xT )

�
. (8)

The Weizsäcker-Williams unintegrated gluon distribu-
tion [5, 22, 34], on the other hand, is expressed most
naturally in terms of the light cone gauge (A+ = 0) field,
which has large transverse components. These can be
obtained by a gauge transformation

Ai(xT ) =
1

ig
U †(xT ) @iU(xT ) . (9)

Since, in light cone gauge, the gauge field lives above
the light cone Ai(xT , x�) ⇠ ✓(x�)Ai(xT ), this field can
also be thought of as a sheet of color electric field on the
light cone Ei(xT , x�) = �(t�z)Ai(xT ). The Weizsäcker-
Williams distribution is simply the two-point correlator
of the light cone gauge fields

xGij
WW(x,~k) =
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L2

Z
d2xT

(2⇡)2
d2yT

(2⇡)2
e�ikT ·(xT�yT )
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j
a(yT )
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, (10)

where we have normalized the distribution with the
transverse area of the target L2. This normalization
drops out of the results expressed in terms of the ellip-
tical asymmetry v2. For analytical calculations of the

functions G(1)(x0, q?) and h(1)
? (x0, q?) in the McLerran-

Venugopalan (MV) model [35, 36], see Refs. [6, 22].
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E-by-E solve CYM for two colliding nuclei : [Dµ, Fµ⌫ ] = J
⌫
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where

J+ = �(x�)⇢1(x?)

J� = �(x+)⇢2(x?)

J i = 0 (11)

and we have restricted ourselves to work in a gauge where the link operators along

the particle trajectories drop out.

Before the collision takes place, we find a solution of the equations of motion

to be

A+ = 0

A� = 0

Ai = �(x�)�(�x+)↵i
1(x?) + �(x+)�(�x�)↵i

2(x?) (12)

This is a solution of the Yang-Mills equations in all of space-time except on or

within the forward light cone, as shown in Fig. 3. In the forward light cone, we

1 2

3
x+x-

x0

x3

Fig. 3: Regions with di�erent

structures of the gauge poten-

tial:

In regions 1 and 2 we have the

well known one nucleus solu-

tions ↵1,2. While in the back-

ward light cone there the gauge

potential is vanishing we have

a nontrivial solution in the for-

ward lightcone, region 3

must add in extra pieces in order to have a solution. This will be done below. The
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FIG. 1: Linearly polarized and unpolarized WW gluon distributions versus transverse momentum q? at di↵erent rapidities Y .
Transverse momentum is measured in units of the saturation momentum Qs(Y ). The curves correspond to evolution at fixed
↵s = 0.15.

variant mass is given by M = P?/
p
z(1� z). Also,

✏2f = z(1 � z)Q2 with Q2 of order P 2
?. Here, we re-

strict ourselves to kinematic configurations where ~P? is
greater than ~q?, referred to as the “correlation limit” in
Refs. [5, 22].

In Eq. (2) � denotes the azimuthal angle between ~P?
and ~q?, respectively. We introduce the following measure
for the azimuthal anisotropy,

v2 ⌘ hcos 2�i . (4)

The average over � in this equation is performed with
the weight (1) or (2), respectively. Since

x =
1

s

✓
q2? +

1

z(1� z)
P 2
?

◆
(5)

is independent of �, for a longitudinally/transversally po-
larized photon we have

vL2 =
1

2

h(1)
? (x, q?)

G(1)(x, q?)
, vT2 = �

✏2fP
2
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✏4f + P 4
?

h(1)
? (x, q?)

G(1)(x, q?)
.

(6)

The linearly polarized h(1)
? and unpolarized G(1) dis-

tributions are defined as the traceless part and the trace
of the Weizsäcker-Williams unintegrated gluon distribu-
tion, respectively:

xGij
WW =

1

2
�ijxG(1) � 1

2

✓
�ij � 2

kikj
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◆
xh(1)

? . (7)

In the CGC framework the gluonic degrees of freedom at
small x are described by Wilson lines. They are path or-
dered exponentials in the strong color field of the target,

and cross sections for di↵erent observables can be related
to di↵erent correlation functions of the Wilson lines. The
Wilson line is a path ordered exponential of the covariant
gauge field, whose largest component is A+:

U(xT ) = P exp

⇢
ig

Z
dx�A+(x�,xT )

�
. (8)

The Weizsäcker-Williams unintegrated gluon distribu-
tion [5, 22, 34], on the other hand, is expressed most
naturally in terms of the light cone gauge (A+ = 0) field,
which has large transverse components. These can be
obtained by a gauge transformation

Ai(xT ) =
1

ig
U †(xT ) @iU(xT ) . (9)

Since, in light cone gauge, the gauge field lives above
the light cone Ai(xT , x�) ⇠ ✓(x�)Ai(xT ), this field can
also be thought of as a sheet of color electric field on the
light cone Ei(xT , x�) = �(t�z)Ai(xT ). The Weizsäcker-
Williams distribution is simply the two-point correlator
of the light cone gauge fields

xGij
WW(x,~k) =
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L2

Z
d2xT

(2⇡)2
d2yT

(2⇡)2
e�ikT ·(xT�yT )
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Ai

a(xT )A
j
a(yT )

↵
, (10)

where we have normalized the distribution with the
transverse area of the target L2. This normalization
drops out of the results expressed in terms of the ellip-
tical asymmetry v2. For analytical calculations of the

functions G(1)(x0, q?) and h(1)
? (x0, q?) in the McLerran-

Venugopalan (MV) model [35, 36], see Refs. [6, 22].
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Classical Yang-Mills approach on 2+1D lattice
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E-by-E solve CYM for two colliding nuclei : [Dµ, Fµ⌫ ] = J
⌫

TPSC%seminar,%IIT%Roorkee%%29/11/12% 39%

Color%Glass%Condensate%

where

J+ = �(x�)⇢1(x?)

J� = �(x+)⇢2(x?)

J i = 0 (11)

and we have restricted ourselves to work in a gauge where the link operators along

the particle trajectories drop out.

Before the collision takes place, we find a solution of the equations of motion

to be

A+ = 0

A� = 0

Ai = �(x�)�(�x+)↵i
1(x?) + �(x+)�(�x�)↵i

2(x?) (12)

This is a solution of the Yang-Mills equations in all of space-time except on or

within the forward light cone, as shown in Fig. 3. In the forward light cone, we
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Fig. 3: Regions with di�erent

structures of the gauge poten-

tial:

In regions 1 and 2 we have the

well known one nucleus solu-

tions ↵1,2. While in the back-

ward light cone there the gauge

potential is vanishing we have

a nontrivial solution in the for-

ward lightcone, region 3

must add in extra pieces in order to have a solution. This will be done below. The
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FIG. 1: Linearly polarized and unpolarized WW gluon distributions versus transverse momentum q? at di↵erent rapidities Y .
Transverse momentum is measured in units of the saturation momentum Qs(Y ). The curves correspond to evolution at fixed
↵s = 0.15.

variant mass is given by M = P?/
p
z(1� z). Also,

✏2f = z(1 � z)Q2 with Q2 of order P 2
?. Here, we re-

strict ourselves to kinematic configurations where ~P? is
greater than ~q?, referred to as the “correlation limit” in
Refs. [5, 22].

In Eq. (2) � denotes the azimuthal angle between ~P?
and ~q?, respectively. We introduce the following measure
for the azimuthal anisotropy,

v2 ⌘ hcos 2�i . (4)

The average over � in this equation is performed with
the weight (1) or (2), respectively. Since

x =
1

s

✓
q2? +

1

z(1� z)
P 2
?

◆
(5)

is independent of �, for a longitudinally/transversally po-
larized photon we have

vL2 =
1

2

h(1)
? (x, q?)

G(1)(x, q?)
, vT2 = �

✏2fP
2
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✏4f + P 4
?

h(1)
? (x, q?)

G(1)(x, q?)
.

(6)

The linearly polarized h(1)
? and unpolarized G(1) dis-

tributions are defined as the traceless part and the trace
of the Weizsäcker-Williams unintegrated gluon distribu-
tion, respectively:

xGij
WW =
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2
�ijxG(1) � 1

2

✓
�ij � 2

kikj

k2

◆
xh(1)

? . (7)

In the CGC framework the gluonic degrees of freedom at
small x are described by Wilson lines. They are path or-
dered exponentials in the strong color field of the target,

and cross sections for di↵erent observables can be related
to di↵erent correlation functions of the Wilson lines. The
Wilson line is a path ordered exponential of the covariant
gauge field, whose largest component is A+:

U(xT ) = P exp

⇢
ig

Z
dx�A+(x�,xT )

�
. (8)

The Weizsäcker-Williams unintegrated gluon distribu-
tion [5, 22, 34], on the other hand, is expressed most
naturally in terms of the light cone gauge (A+ = 0) field,
which has large transverse components. These can be
obtained by a gauge transformation

Ai(xT ) =
1

ig
U †(xT ) @iU(xT ) . (9)

Since, in light cone gauge, the gauge field lives above
the light cone Ai(xT , x�) ⇠ ✓(x�)Ai(xT ), this field can
also be thought of as a sheet of color electric field on the
light cone Ei(xT , x�) = �(t�z)Ai(xT ). The Weizsäcker-
Williams distribution is simply the two-point correlator
of the light cone gauge fields

xGij
WW(x,~k) =

8⇡

L2

Z
d2xT

(2⇡)2
d2yT

(2⇡)2
e�ikT ·(xT�yT )

⇥
⌦
Ai

a(xT )A
j
a(yT )

↵
, (10)

where we have normalized the distribution with the
transverse area of the target L2. This normalization
drops out of the results expressed in terms of the ellip-
tical asymmetry v2. For analytical calculations of the

functions G(1)(x0, q?) and h(1)
? (x0, q?) in the McLerran-

Venugopalan (MV) model [35, 36], see Refs. [6, 22].
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Initial geometry and fluctuations in A+A
IP-Glasma provides good description of initial geometry and

fluctuations in Pb+Pb and Au+Au.
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energies, calculated pion spectra also underestimate the
data for pT < 300MeV but v1(pT ) is well reproduced.

We present event-by-event distributions of v2, v3, and
v4 compared to results from the ATLAS collaboration
[40, 41] in Fig. 9. We chose 20-25% central events be-
cause eccentricity distributions from neither MC-Glauber
nor MC-KLN models agree with the experimental data
in this bin [41]. To compare data with the distribution
of initial eccentricities [42] from the IP-Glasma model
and the final vn distributions after hydrodynamic evolu-
tion, we scaled the distributions by their respective mean
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value. We find that the initial eccentricity distributions
are a good approximation to the distribution of experi-
mental vn. Only for v4 (and less so for v2) the large vn

end of the experimental distribution is much better de-
scribed by the hydrodynamic vn distribution than the "n

distribution. This can be explained by non-linear mode
coupling becoming important for large values of v2 and
v4 [43].

In summary, we have shown that the IP-
Glasma+music model gives very good agreement
to multiplicity and flow distributions at RHIC and LHC.
By including properly sub-nucleon scale color charge
fluctuations and their resulting early time CYM dynam-
ics, this model significantly extends previous studies in
the literature [19, 36, 44–48]. Omitted in all studies
including ours is the stated dynamics of instabilities and
strong scattering in over-occupied classical fields that
can drive the system to isotropy and generate substan-

Same framework can be used to study various A+A systems like

(asymmetric ) Cu+Au and (deformed) U+U nuclear collisions.
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not necessarily the only explanation. In fact, for RHIC
energies, calculated pion spectra also underestimate the
data for pT < 300MeV but v1(pT ) is well reproduced.
We present event-by-event distributions of v2, v3, and

v4 compared to results from the ATLAS collaboration
[40, 41] in Fig. 9. We chose 20-25% central events be-
cause eccentricity distributions from neither MC-Glauber
nor MC-KLN models agree with the experimental data
in this bin [41]. To compare data with the distribution
of initial eccentricities [42] from the IP-Glasma model
and the final vn distributions after hydrodynamic evolu-
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tion, we scaled the distributions by their respective mean
value. We find that the initial eccentricity distributions
are a good approximation to the distribution of experi-
mental vn. Only for v4 (and less so for v2) the large vn
end of the experimental distribution is much better de-
scribed by the hydrodynamic vn distribution than the εn
distribution. This can be explained by non-linear mode
coupling becoming important for large values of v2 and
v4.

In summary, we have shown that the IP-
Glasma+music model gives very good agreement
to multiplicity and flow distributions at RHIC and LHC.
By including properly sub-nucleon scale color charge
fluctuations and their resulting early time CYM dynam-
ics, this model significantly extends previous studies in
the literature [19, 36, 43–47]. Omitted in all studies
including ours is the stated dynamics of instabilities and
strong scattering in over-occupied classical fields that

3

FIG. 1. The mean transverse momentum hpT i of identified
particles as a function of the number of charged hadrons per
pseudo-rapidity interval around mid-rapidity compared to ex-
perimental data from the ALICE collaboration [84].

formula. This sampling procedure introduces the least
distortion in the momentum distribution of particle sam-
ples when the Cooper-Frye formula takes on negative val-
ues in certain regions of the hypersurface [83].

We have checked by explicit calculation that for
charged hadrons the e↵ect of rescattering in UrQMD is
negligible. Proton spectra and vn(pT ) are slighty blue
shifted because of the additional hadronic scatterings
[19].

Results We begin by presenting results for the av-
erage transverse momentum hpT i of identified particles
as a function of charged particle multiplicity in Fig. 1.
Using both temperature dependent ⌘/s and ⇣/s and a
switching time of ⌧0 = 0.4 fm we find good agreement
with experimental data from the ALICE collaboration
for charged pions, protons, and ⇤’s. The hpT i of charged
kaons is underestimated. We note that as discussed for
heavy ion collisions in [70], the inclusion of bulk viscosity
is essential in order not to overestimate hpT i. Without
bulk viscosity, the pion hpT i is overestimated the most,
by approximately 50%. The e↵ect of using the constant
e↵ective ⌘/s is weak as is the e↵ect of a smaller switching
time ⌧0 = 0.2 fm, which is not shown here.

Having established the agreement with measured
transverse momentum spectra, which is almost entirely
determined by hpT i, we now present results for vn from
two-particle correlations. To compute vn{2} using par-
ticle samples from UrQMD, we first construct the flow
vector Qn =

P
i wiein�i , where the sum i runs over all

particles of interest with 0.3GeV < pT < 3GeV (when
comparing to CMS results), and the weights are set to
wi = 1. The two particle cumulant vn{2} is then com-
puted as

vn{2} =
1

hN(N � 1)iev
(hRe{QnQ

⇤
n}�Niev) , (3)

FIG. 2. The second and third harmonic v2{2} and v3{2} of
charged hadrons as a function of the number of tracks (as
defined by the CMS collaboration) for the temperature de-
pendent ⌘/s using ⌧0 = 0.2 fm (squares) and ⌧0 = 0.4 fm
(circles). We compare to experimental data from the CMS
Collaboration [85] with peripheral events subtracted.
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FIG. 3. Same as Fig. 2, but for the e↵ective ⌘/s = 0.2.

where N is the number of particles included in the cal-
culation of Qn and h·iev is the average over events. In
practice, we sample the hypersurface from each hydrody-
namic event 5000 times and run UrQMD for each of these
particle configurations. For the evaluation of vn{2} we
combine the UrQMD output of all 5000 runs to collect
enough statistics and suppress short range correlations
from e.g. resonance decays. The latter e↵ect is desired
because the measurement uses a large pseudo-rapidity
gap of |�⌘| > 2 between the two particles, also eliminat-
ing short range correlations.

In Fig. 2 we see that above a multiplicity of No✏ine
trk '

80 = 2hNo✏ine
trk i, the experimental vn{2} are well re-

produced by our calculation, considering the uncertainty
from the initial switching time, which we vary from ⌧0 =

Mantysaari, Schenke, Shen, PT 1705.03177

Position space correlations : Stress-Energy Tensor
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How about EIC observables ?

Input to hydro, transport, 
p+A, A+A collisions

Input to PYTHIA, p+p collisions

24

Classical Yang-Mills approach on 2+1D lattice
Schenke, Tribedy, Venugopalan 1202.6646

E-by-E solve CYM for two colliding nuclei : [Dµ, Fµ⌫ ] = J
⌫

TPSC%seminar,%IIT%Roorkee%%29/11/12% 39%

Color%Glass%Condensate%

where

J+ = �(x�)⇢1(x?)

J� = �(x+)⇢2(x?)

J i = 0 (11)

and we have restricted ourselves to work in a gauge where the link operators along

the particle trajectories drop out.

Before the collision takes place, we find a solution of the equations of motion

to be

A+ = 0

A� = 0

Ai = �(x�)�(�x+)↵i
1(x?) + �(x+)�(�x�)↵i

2(x?) (12)

This is a solution of the Yang-Mills equations in all of space-time except on or

within the forward light cone, as shown in Fig. 3. In the forward light cone, we

1 2

3
x+x-

x0

x3

Fig. 3: Regions with di�erent

structures of the gauge poten-

tial:

In regions 1 and 2 we have the

well known one nucleus solu-

tions ↵1,2. While in the back-

ward light cone there the gauge

potential is vanishing we have

a nontrivial solution in the for-

ward lightcone, region 3

must add in extra pieces in order to have a solution. This will be done below. The
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Ax0=0 = A(A) + A(B)

The%field%a|er%collision:%

Once%Aμ%%a|er%collision%is%known,%%
we%can%calculate:%
%
Fμν%%&%StressVEnergy%Tensor%(Tμν),%
Hamiltonian%(H). 
%
Final%energy%density%%(=%T00)%
~%E2%+%B2%%
%
%%

Solve%YangVMills%equa1on%for%
individual%nuclei%on%2+1%D%latce.%

Produced%par1cle%mul1plicity%or%number%density%=%n(k)%%can%be%calculated%by%assuming%
%a%massless%dispersion%rela1on%ω(k)%=%k.%

H ⇠ n(k)�(k)

Schenke,%PT,%Venugopalan%PRC#86,#034908#(2012)%
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Color charge density for one A+A collision

Two point correlator for one A+A collision

⇢(x?) sampled from local Gaussian distribution W [⇢]
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FIG. 1: Linearly polarized and unpolarized WW gluon distributions versus transverse momentum q? at di↵erent rapidities Y .
Transverse momentum is measured in units of the saturation momentum Qs(Y ). The curves correspond to evolution at fixed
↵s = 0.15.

variant mass is given by M = P?/
p
z(1� z). Also,

✏2f = z(1 � z)Q2 with Q2 of order P 2
?. Here, we re-

strict ourselves to kinematic configurations where ~P? is
greater than ~q?, referred to as the “correlation limit” in
Refs. [5, 22].

In Eq. (2) � denotes the azimuthal angle between ~P?
and ~q?, respectively. We introduce the following measure
for the azimuthal anisotropy,

v2 ⌘ hcos 2�i . (4)

The average over � in this equation is performed with
the weight (1) or (2), respectively. Since

x =
1

s

✓
q2? +

1

z(1� z)
P 2
?

◆
(5)

is independent of �, for a longitudinally/transversally po-
larized photon we have

vL2 =
1

2

h(1)
? (x, q?)

G(1)(x, q?)
, vT2 = �

✏2fP
2
?

✏4f + P 4
?

h(1)
? (x, q?)

G(1)(x, q?)
.

(6)

The linearly polarized h(1)
? and unpolarized G(1) dis-

tributions are defined as the traceless part and the trace
of the Weizsäcker-Williams unintegrated gluon distribu-
tion, respectively:

xGij
WW =

1

2
�ijxG(1) � 1

2

✓
�ij � 2

kikj

k2

◆
xh(1)

? . (7)

In the CGC framework the gluonic degrees of freedom at
small x are described by Wilson lines. They are path or-
dered exponentials in the strong color field of the target,

and cross sections for di↵erent observables can be related
to di↵erent correlation functions of the Wilson lines. The
Wilson line is a path ordered exponential of the covariant
gauge field, whose largest component is A+:

U(xT ) = P exp

⇢
ig

Z
dx�A+(x�,xT )

�
. (8)

The Weizsäcker-Williams unintegrated gluon distribu-
tion [5, 22, 34], on the other hand, is expressed most
naturally in terms of the light cone gauge (A+ = 0) field,
which has large transverse components. These can be
obtained by a gauge transformation

Ai(xT ) =
1

ig
U †(xT ) @iU(xT ) . (9)

Since, in light cone gauge, the gauge field lives above
the light cone Ai(xT , x�) ⇠ ✓(x�)Ai(xT ), this field can
also be thought of as a sheet of color electric field on the
light cone Ei(xT , x�) = �(t�z)Ai(xT ). The Weizsäcker-
Williams distribution is simply the two-point correlator
of the light cone gauge fields

xGij
WW(x,~k) =

8⇡

L2

Z
d2xT

(2⇡)2
d2yT

(2⇡)2
e�ikT ·(xT�yT )

⇥
⌦
Ai

a(xT )A
j
a(yT )

↵
, (10)

where we have normalized the distribution with the
transverse area of the target L2. This normalization
drops out of the results expressed in terms of the ellip-
tical asymmetry v2. For analytical calculations of the

functions G(1)(x0, q?) and h(1)
? (x0, q?) in the McLerran-

Venugopalan (MV) model [35, 36], see Refs. [6, 22].
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Refs. [5, 22].
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In the CGC framework the gluonic degrees of freedom at
small x are described by Wilson lines. They are path or-
dered exponentials in the strong color field of the target,
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The Weizsäcker-Williams unintegrated gluon distribu-
tion [5, 22, 34], on the other hand, is expressed most
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which has large transverse components. These can be
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where we have normalized the distribution with the
transverse area of the target L2. This normalization
drops out of the results expressed in terms of the ellip-
tical asymmetry v2. For analytical calculations of the

functions G(1)(x0, q?) and h(1)
? (x0, q?) in the McLerran-

Venugopalan (MV) model [35, 36], see Refs. [6, 22].
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FIG. 1: Left: Dipole cross-section in DIS. Right: Overlap of unintegrated gluon distributions in proton-proton collisions.

where Ũ(b⊥ ± r⊥
2 ) is a Wilson line in the fundamental representation representing the interaction between a quark

and the color fields of the target. The average ⟨· · · ⟩x is an average over these color fields; the energy dependence of
the correlator as a function of x (or the rapidity Y = ln(1/x)) is given by the JIMWLK equation [? ]. In the large Nc

limit, the equation for the energy evolution of this correlator is the Balitsky-Kovchegov (BK) equation [? ]. We note
however that neither JIMWLK nor BK is at present equipped to deal well with the impact parameter dependence of
the dipole cross-section; the dipole cross-section in this formalism is taken in eq. (2) to be independent of the impact
parameter. To address the impact parameter dependence of this equation, one resorts to models which parametrize
both saturation effects and the impact parameter dependence.

In hadron-hadron collisions, one can derive at leading order the expression [8]

dNg(b⊥)

dy d2p⊥

=
16αs

πCF

1
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(2π)5

∫

d2s⊥
dφ(x1,k⊥|s⊥)

d2s⊥

dφ(x2,p⊥ − k⊥|s⊥ − b⊥)

d2s⊥
(3)

This equation is a generalization of the well known k⊥ factorization expression for inclusive gluon production [? ?
] to include the impact parameter dependence of the unintegrated gluon distributions. Here CF = N2

c − 1/2Nc is
the Casimir for the fundamental representation. In the large Nc limit, these unintegrated gluon distributions can be
expressed in terms of the dipole cross-section as [? ]

dφ(x,k⊥|s⊥)

d2s⊥
=

k2
⊥NC

4αs

+∞
∫

0

d2r⊥eik⊥.r⊥

[

1 − 1

2

dσp
dip

d2s⊥
(r⊥, x, s⊥)

]2

(4)

Thus the impact parameter dependent dipole cross-section determined from HERA data can be used to compute the
single inclusive gluon distribution in proton-proton collisions with no additional parameters. This statement is strictly
valid to leading log accuracy for momenta k⊥ > Q2

s,p. However, as we shall discuss later, there will be additional
parameters that come in when one wants to make contact with the measured hadron spectrum.

This approach was applied most recently to compute the single inclusive hadron spectrum in proton-proton collisions
at the LHC by Levin and Rezaeian [? ]. The quantitative differences of our study to their work are the following:
a) we consider all three dipole models that give good fits to HERA data to see whether they give results consistent
with the HERA data, b) we study and comment on the dependence of the results on variations of the parameters in
the study and c) we convolve the inclusive gluon distribution with fragmentation function instead of using a simple
fragmentation presciption as in ref. [? ]. We shall also comment on other quantitative differences in our respective
treatments. A qualitative difference of our work relative to that of ref. [? ] is that we compute directly the average
inclusive multiplicity at a given impact parameter. In computing the minimum bias single inclusive multiplicity
distribution, there are similar uncertainties as ref. [? ], which can be fixed by normalizing the data to single inclusive
data at lower center of mass energies. However, as we shall discuss later, the average multiplicity at a given impact
parameter however is an essential input in computing the probability distribution as a function of event multiplicity.
We shall compute the n-particle probability distribution and compare our results with the p+p collider data. These
results will be important in understanding the role of various sources of fluctuations in the p+p collider data.
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Steps towards EIC observables 
General ingredients :  TMDs that appear in different processes 

Dipole gluon distribution (DP) : (G(2)) + linearly polarized partner (h(2)).
Weizsacker-Williams (WW) : gluon distribution (G(1)) + linearly polarized 
partner (h(1)).
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Talk by Daniël Boer on Monday; ArXiv 1611.06089

At small x, there are two di↵erent unintegrated gluon distributions (UGD):
Dipole gluon distribution (G(2)) + linearly polarized partner (h(2)).
Appears in many processes. Small x evolution is well understood.
Maximal polarization xh

(2) = xG
(2)
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Talk by Daniël Boer on Monday

Talk by Elke Aschenauer on Tuesday

Dijets in DIS: saturation{ decrease of back-to-back dihadron correlation as a probe of G
(1)

L. Zheng, E. C. Aschenauer, J. H. Lee and B. W. Xia Phys. Rev. D 89, 7, 074037 (2014)

In this talk: structure of back-to-back peak as a probe of h
(1)
g

VSkokov@bnl.gov Dijet Azimuthal Anisotropy in DIS RBRC Synergies workshop 2 / 33

Introduction
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Inclusive dijets at the EIC

Azimuthal anisotropy in DIS dijet production 
are long range & probe WW TMDs in nuclei 

Weizsacker-Williams (WW) : gluon distribution (G(1)) + linearly polarized          
.                                                                                          partner (h(1))
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The distribution of linearly polarized gluons and elliptic azimuthal anisotropy in DIS
dijet production at high energy
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We determine the distribution of linearly polarized gluons of a dense target at small x by solving
the B-JIMWLK rapidity evolution equations. From these solutions we estimate the amplitude of
⇠ cos 2� azimuthal asymmetries in DIS dijet production at high energies. We find sizeable long-
range in rapidity azimuthal asymmetries with a magnitude in the range of v2 = hcos 2�i ⇠ 10%.

Transverse momentum dependent (TMD) factoriza-
tion [1, 2] in deep inelastic scattering predicts a distribu-
tion for linearly polarized gluons in an unpolarized tar-
get [3, 4]. This is reflected in cos 2� asymmetries in dijet
production [5, 6] and in other processes [7–9]. To date
little is known about the magnitude of these functions in
the small-x regime of high energies. In this paper we per-
form first estimates of these functions by solving the B-
JIMWLK renormalization group equations [10–21]. Also,
we use our solutions to analyze the magnitude of the re-
sulting cos 2� asymmetry in dijet production [5, 22] at
leading order. These could be tested at a future electron-
ion collider (EIC) [23, 24], where the small-x e↵ects dis-
cussed here can be enhanced by using a nuclear target.

Recent data for high multiplicity p+p [25, 26] and

p+Pb [27–33] data at the LHC have revealed long-range
(in rapidity) angular cos 2� “ridge” correlations in par-
ticle production high multiplicity events. The magni-
tude of these long range correlations is conventionally
parametrized in terms of v2 ⌘ hcos 2�i. In fact, the
azimuthal correlation in DIS dijet production at high
energy originates also from the long-ranged eikonal in-
teraction and so results in a similar experimental sig-
nature as the “ridge”. To make this connection ex-
plicit we shall parametrize the azimuthal structure aris-
ing from the linearly polarized gluon distribution in terms
of v2 = hcos 2�i, and determine its dependence on the ra-
pidity imbalance of the dijet.
At leading order the cross section for inclusive produc-

tion of a dijet in �⇤-nucleus scattering is given by [5, 6]
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Here,

~P? = (1� z)~k1 � z~k2 , ~q? = ~k1 + ~k2 (3)

are the dijet transverse momentum scale ~P? and the

transverse momentum imbalance ~q?, respectively. The
transverse momenta of the produced quark and anti-
quark are given by ~k1 and ~k2 and their respective light-
cone momentum fractions are z and 1 � z; the dijet in-
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Step1: TMDs from the IP-Sat model for nuclei
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FIG. 1: Linearly polarized and unpolarized WW gluon distributions versus transverse momentum q? at di↵erent rapidities Y .
Transverse momentum is measured in units of the saturation momentum Qs(Y ). The curves correspond to evolution at fixed
↵s = 0.15.

variant mass is given by M = P?/
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z(1� z). Also,

✏2f = z(1 � z)Q2 with Q2 of order P 2
?. Here, we re-

strict ourselves to kinematic configurations where ~P? is
greater than ~q?, referred to as the “correlation limit” in
Refs. [5, 22].

In Eq. (2) � denotes the azimuthal angle between ~P?
and ~q?, respectively. We introduce the following measure
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The linearly polarized h(1)
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In the CGC framework the gluonic degrees of freedom at
small x are described by Wilson lines. They are path or-
dered exponentials in the strong color field of the target,

and cross sections for di↵erent observables can be related
to di↵erent correlation functions of the Wilson lines. The
Wilson line is a path ordered exponential of the covariant
gauge field, whose largest component is A+:

U(xT ) = P exp
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The Weizsäcker-Williams unintegrated gluon distribu-
tion [5, 22, 34], on the other hand, is expressed most
naturally in terms of the light cone gauge (A+ = 0) field,
which has large transverse components. These can be
obtained by a gauge transformation

Ai(xT ) =
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U †(xT ) @iU(xT ) . (9)

Since, in light cone gauge, the gauge field lives above
the light cone Ai(xT , x�) ⇠ ✓(x�)Ai(xT ), this field can
also be thought of as a sheet of color electric field on the
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Williams distribution is simply the two-point correlator
of the light cone gauge fields
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where we have normalized the distribution with the
transverse area of the target L2. This normalization
drops out of the results expressed in terms of the ellip-
tical asymmetry v2. For analytical calculations of the

functions G(1)(x0, q?) and h(1)
? (x0, q?) in the McLerran-

Venugopalan (MV) model [35, 36], see Refs. [6, 22].
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The Weizsäcker-Williams unintegrated gluon distribu-
tion [5, 22, 34], on the other hand, is expressed most
naturally in terms of the light cone gauge (A+ = 0) field,
which has large transverse components. These can be
obtained by a gauge transformation

Ai(xT ) =
1

ig
U †(xT ) @iU(xT ) . (9)

Since, in light cone gauge, the gauge field lives above
the light cone Ai(xT , x�) ⇠ ✓(x�)Ai(xT ), this field can
also be thought of as a sheet of color electric field on the
light cone Ei(xT , x�) = �(t�z)Ai(xT ). The Weizsäcker-
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where we have normalized the distribution with the
transverse area of the target L2. This normalization
drops out of the results expressed in terms of the ellip-
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Weizsacker-Williams gluon distributions
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of the Weizsäcker-Williams unintegrated gluon distribu-
tion, respectively:

xGij
WW =

1

2
�ijxG(1) � 1

2

✓
�ij � 2

kikj

k2

◆
xh(1)

? . (7)

In the CGC framework the gluonic degrees of freedom at
small x are described by Wilson lines. They are path or-
dered exponentials in the strong color field of the target,

and cross sections for di↵erent observables can be related
to di↵erent correlation functions of the Wilson lines. The
Wilson line is a path ordered exponential of the covariant
gauge field, whose largest component is A+:

U(xT ) = P exp

⇢
ig

Z
dx�A+(x�,xT )

�
. (8)
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Williams distribution is simply the two-point correlator
of the light cone gauge fields

xGij
WW(x,~k) =

8⇡

L2

Z
d2xT

(2⇡)2
d2yT

(2⇡)2
e�ikT ·(xT�yT )

⇥
⌦
Ai

a(xT )A
j
a(yT )

↵
, (10)

where we have normalized the distribution with the
transverse area of the target L2. This normalization
drops out of the results expressed in terms of the ellip-
tical asymmetry v2. For analytical calculations of the

functions G(1)(x0, q?) and h(1)
? (x0, q?) in the McLerran-

Venugopalan (MV) model [35, 36], see Refs. [6, 22].
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FIG. 1: Linearly polarized and unpolarized WW gluon distributions versus transverse momentum q? at di↵erent rapidities Y .
Transverse momentum is measured in units of the saturation momentum Qs(Y ). The curves correspond to evolution at fixed
↵s = 0.15.

variant mass is given by M = P?/
p
z(1� z). Also,

✏2f = z(1 � z)Q2 with Q2 of order P 2
?. Here, we re-

strict ourselves to kinematic configurations where ~P? is
greater than ~q?, referred to as the “correlation limit” in
Refs. [5, 22].

In Eq. (2) � denotes the azimuthal angle between ~P?
and ~q?, respectively. We introduce the following measure
for the azimuthal anisotropy,

v2 ⌘ hcos 2�i . (4)

The average over � in this equation is performed with
the weight (1) or (2), respectively. Since

x =
1

s

✓
q2? +

1

z(1� z)
P 2
?

◆
(5)

is independent of �, for a longitudinally/transversally po-
larized photon we have

vL2 =
1

2
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G(1)(x, q?)
, vT2 = �

✏2fP
2
?

✏4f + P 4
?

h(1)
? (x, q?)

G(1)(x, q?)
.

(6)

The linearly polarized h(1)
? and unpolarized G(1) dis-

tributions are defined as the traceless part and the trace
of the Weizsäcker-Williams unintegrated gluon distribu-
tion, respectively:

xGij
WW =

1

2
�ijxG(1) � 1

2

✓
�ij � 2

kikj

k2

◆
xh(1)

? . (7)

In the CGC framework the gluonic degrees of freedom at
small x are described by Wilson lines. They are path or-
dered exponentials in the strong color field of the target,

and cross sections for di↵erent observables can be related
to di↵erent correlation functions of the Wilson lines. The
Wilson line is a path ordered exponential of the covariant
gauge field, whose largest component is A+:

U(xT ) = P exp

⇢
ig

Z
dx�A+(x�,xT )

�
. (8)

The Weizsäcker-Williams unintegrated gluon distribu-
tion [5, 22, 34], on the other hand, is expressed most
naturally in terms of the light cone gauge (A+ = 0) field,
which has large transverse components. These can be
obtained by a gauge transformation

Ai(xT ) =
1

ig
U †(xT ) @iU(xT ) . (9)

Since, in light cone gauge, the gauge field lives above
the light cone Ai(xT , x�) ⇠ ✓(x�)Ai(xT ), this field can
also be thought of as a sheet of color electric field on the
light cone Ei(xT , x�) = �(t�z)Ai(xT ). The Weizsäcker-
Williams distribution is simply the two-point correlator
of the light cone gauge fields

xGij
WW(x,~k) =

8⇡
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Z
d2xT

(2⇡)2
d2yT

(2⇡)2
e�ikT ·(xT�yT )

⇥
⌦
Ai

a(xT )A
j
a(yT )

↵
, (10)

where we have normalized the distribution with the
transverse area of the target L2. This normalization
drops out of the results expressed in terms of the ellip-
tical asymmetry v2. For analytical calculations of the

functions G(1)(x0, q?) and h(1)
? (x0, q?) in the McLerran-

Venugopalan (MV) model [35, 36], see Refs. [6, 22].

Step2: WW gluon distributions & q-qbar jets in DIS

Quark-antiquark jet correlation 
 azimuthal anisotropy in DIS
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We determine the distribution of linearly polarized gluons of a dense target at small x by solving
the B-JIMWLK rapidity evolution equations. From these solutions we estimate the amplitude of
⇠ cos 2� azimuthal asymmetries in DIS dijet production at high energies. We find sizeable long-
range in rapidity azimuthal asymmetries with a magnitude in the range of v2 = hcos 2�i ⇠ 10%.

Transverse momentum dependent (TMD) factoriza-
tion [1, 2] in deep inelastic scattering predicts a distribu-
tion for linearly polarized gluons in an unpolarized tar-
get [3, 4]. This is reflected in cos 2� asymmetries in dijet
production [5, 6] and in other processes [7–9]. To date
little is known about the magnitude of these functions in
the small-x regime of high energies. In this paper we per-
form first estimates of these functions by solving the B-
JIMWLK renormalization group equations [10–21]. Also,
we use our solutions to analyze the magnitude of the re-
sulting cos 2� asymmetry in dijet production [5, 22] at
leading order. These could be tested at a future electron-
ion collider (EIC) [23, 24], where the small-x e↵ects dis-
cussed here can be enhanced by using a nuclear target.

Recent data for high multiplicity p+p [25, 26] and

p+Pb [27–33] data at the LHC have revealed long-range
(in rapidity) angular cos 2� “ridge” correlations in par-
ticle production high multiplicity events. The magni-
tude of these long range correlations is conventionally
parametrized in terms of v2 ⌘ hcos 2�i. In fact, the
azimuthal correlation in DIS dijet production at high
energy originates also from the long-ranged eikonal in-
teraction and so results in a similar experimental sig-
nature as the “ridge”. To make this connection ex-
plicit we shall parametrize the azimuthal structure aris-
ing from the linearly polarized gluon distribution in terms
of v2 = hcos 2�i, and determine its dependence on the ra-
pidity imbalance of the dijet.
At leading order the cross section for inclusive produc-

tion of a dijet in �⇤-nucleus scattering is given by [5, 6]

E1E2
d��⇤

TA!qq̄X

d3k1d3k2d2b
= ↵eme2q↵s� (x�⇤ � 1) z(1� z)

�
z2 + (1� z)2

� ✏4f + P 4
?

(P 2
? + ✏2f )

4

⇥
"
xG(1)(x, q?)�

2✏2fP
2
?

✏4f + P 4
?
cos (2�)xh(1)

? (x, q?)

#
, (1)

E1E2
d��⇤

LA!qq̄X

d3k1d3k2d2b
= ↵eme2q↵s� (x�⇤ � 1) z2(1� z)2

8✏2fP
2
?

(P 2
? + ✏2f )

4

⇥
h
xG(1)(x, q?) + cos (2�)xh(1)

? (x, q?)
i
. (2)

Here,

~P? = (1� z)~k1 � z~k2 , ~q? = ~k1 + ~k2 (3)

are the dijet transverse momentum scale ~P? and the

transverse momentum imbalance ~q?, respectively. The
transverse momenta of the produced quark and anti-
quark are given by ~k1 and ~k2 and their respective light-
cone momentum fractions are z and 1 � z; the dijet in-
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Large long-range azimuthal 
correlations in DIS dijet 
production predicted which 
probes WW TMDs in nuclei 
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Another connection : chiral magnetic effect
QCD anomaly driven chirality imbalance leads

to electric current along B-field 

B

44Ru96            44Ru9640Zr96            40Zr96

Neutron

Proton

Proton
Extra 

Stronger Weaker B

RHIC is doing Isobar collisions 
to search for the Chiral Magnetic Effect

∝ (G(1)
A1

(x, y))2(G(1)
A2

(x, y))2 − (h(1)
⊥A1

(x, y))2(h(1)
⊥A2

(x, y))2

Signals of CME → Axial charge density correlator : 

This also probes TMDs (will enable us to make better predictions for EIC)

Lappi, Schlichting 
1708.08625 

talk by Wei Li

Experimental observable : charged dependent azimuthal correlations 
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Summary

• The fundamental ingredients are TMDs for EIC observables 

• TMDs can be estimated consistently in the small-x approach 

• Large long-range cos(2φ) anisotropy in DIS dijets is predicated to probe TMDs

Initial geometry and fluctuations in A+A
IP-Glasma provides good description of initial geometry and

fluctuations in Pb+Pb and Au+Au.
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from the ALICE [37] and ATLAS [38] collaborations.

energies, calculated pion spectra also underestimate the
data for pT < 300MeV but v1(pT ) is well reproduced.

We present event-by-event distributions of v2, v3, and
v4 compared to results from the ATLAS collaboration
[40, 41] in Fig. 9. We chose 20-25% central events be-
cause eccentricity distributions from neither MC-Glauber
nor MC-KLN models agree with the experimental data
in this bin [41]. To compare data with the distribution
of initial eccentricities [42] from the IP-Glasma model
and the final vn distributions after hydrodynamic evolu-
tion, we scaled the distributions by their respective mean
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value. We find that the initial eccentricity distributions
are a good approximation to the distribution of experi-
mental vn. Only for v4 (and less so for v2) the large vn

end of the experimental distribution is much better de-
scribed by the hydrodynamic vn distribution than the "n

distribution. This can be explained by non-linear mode
coupling becoming important for large values of v2 and
v4 [43].

In summary, we have shown that the IP-
Glasma+music model gives very good agreement
to multiplicity and flow distributions at RHIC and LHC.
By including properly sub-nucleon scale color charge
fluctuations and their resulting early time CYM dynam-
ics, this model significantly extends previous studies in
the literature [19, 36, 44–48]. Omitted in all studies
including ours is the stated dynamics of instabilities and
strong scattering in over-occupied classical fields that
can drive the system to isotropy and generate substan-

Same framework can be used to study various A+A systems like

(asymmetric ) Cu+Au and (deformed) U+U nuclear collisions.
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Constraints from DIS + CGC framework have revolutionized p+p, p+A, A+A 
phenomenology over past years at RHIC & LHC energies

We can follow the same path of EIC : 
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FIG. 1. The mean transverse momentum hpT i of identified
particles as a function of the number of charged hadrons per
pseudo-rapidity interval around mid-rapidity compared to ex-
perimental data from the ALICE collaboration [84].

formula. This sampling procedure introduces the least
distortion in the momentum distribution of particle sam-
ples when the Cooper-Frye formula takes on negative val-
ues in certain regions of the hypersurface [83].

We have checked by explicit calculation that for
charged hadrons the e↵ect of rescattering in UrQMD is
negligible. Proton spectra and vn(pT ) are slighty blue
shifted because of the additional hadronic scatterings
[19].

Results We begin by presenting results for the av-
erage transverse momentum hpT i of identified particles
as a function of charged particle multiplicity in Fig. 1.
Using both temperature dependent ⌘/s and ⇣/s and a
switching time of ⌧0 = 0.4 fm we find good agreement
with experimental data from the ALICE collaboration
for charged pions, protons, and ⇤’s. The hpT i of charged
kaons is underestimated. We note that as discussed for
heavy ion collisions in [70], the inclusion of bulk viscosity
is essential in order not to overestimate hpT i. Without
bulk viscosity, the pion hpT i is overestimated the most,
by approximately 50%. The e↵ect of using the constant
e↵ective ⌘/s is weak as is the e↵ect of a smaller switching
time ⌧0 = 0.2 fm, which is not shown here.

Having established the agreement with measured
transverse momentum spectra, which is almost entirely
determined by hpT i, we now present results for vn from
two-particle correlations. To compute vn{2} using par-
ticle samples from UrQMD, we first construct the flow
vector Qn =

P
i wiein�i , where the sum i runs over all

particles of interest with 0.3GeV < pT < 3GeV (when
comparing to CMS results), and the weights are set to
wi = 1. The two particle cumulant vn{2} is then com-
puted as

vn{2} =
1

hN(N � 1)iev
(hRe{QnQ

⇤
n}�Niev) , (3)

FIG. 2. The second and third harmonic v2{2} and v3{2} of
charged hadrons as a function of the number of tracks (as
defined by the CMS collaboration) for the temperature de-
pendent ⌘/s using ⌧0 = 0.2 fm (squares) and ⌧0 = 0.4 fm
(circles). We compare to experimental data from the CMS
Collaboration [85] with peripheral events subtracted.
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FIG. 3. Same as Fig. 2, but for the e↵ective ⌘/s = 0.2.

where N is the number of particles included in the cal-
culation of Qn and h·iev is the average over events. In
practice, we sample the hypersurface from each hydrody-
namic event 5000 times and run UrQMD for each of these
particle configurations. For the evaluation of vn{2} we
combine the UrQMD output of all 5000 runs to collect
enough statistics and suppress short range correlations
from e.g. resonance decays. The latter e↵ect is desired
because the measurement uses a large pseudo-rapidity
gap of |�⌘| > 2 between the two particles, also eliminat-
ing short range correlations.

In Fig. 2 we see that above a multiplicity of No✏ine
trk '

80 = 2hNo✏ine
trk i, the experimental vn{2} are well re-

produced by our calculation, considering the uncertainty
from the initial switching time, which we vary from ⌧0 =

A+A p+A
e+A

Long range azimuthal anisotropy is the key observable across different systems 

Lessons from RHIC/LHC will be helpful to build Monte-Carlo generators for EIC 
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