Mono-X searches for dark matter with the CMS detector

Siddharth Narayanan, on behalf of the CMS Collaboration

CIPANP, Palm Springs CA 30/05/2018

Seeing the invisible

- ▶ By definition, dark matter candidates couple weakly to a general-purpose LHC detector
- ▶ Not much point in producing DM if we can't see it!
- ► Introduce: the mono-X class of searches
 - DM produced in association with one or more SM particles (\mathbf{X})

Seeing the invisible

- ► By definition, dark matter candidates couple weakly to a general-purpose LHC detector
- ▶ Not much point in producing DM if we can't see it!
- ► Introduce: the mono-**X** class of searches
 - DM produced in association with one or more SM particles (\mathbf{X})

- ► **X** creates a transverse momentum imbalance $(p_{\rm T}^{\rm miss})$
- Large $p_{\rm T}^{\rm miss}$ + conservation of momentum \Rightarrow invisible particles!
- \blacktriangleright In certain cases, can trigger on ${\bf X}$

► CMS records proton collisions CMS DETECTOR STFEL RETURN YOKE Total weight : 14.000 tonnes 12.500 tonnes SILICON TRACKERS from the LHC Overall diameter : 15.0 m Pixel (100x150 um) ~16m⁴ ~66M channels Overall length : 28.7 m Microstrips (80x180 um) ~200m2 ~9.6M channels Magnetic field : 3.8 T SUPERCONDUCTING SOLENOID • Today: $\sqrt{s} = 13$ TeV results Niobium titanium coil carrying ~18,000A MUON CHAMBERS \blacktriangleright pp events are messy, so replace: Barrel: 250 Drift Tube, 480 Resistive Plate Chambers Endcaps: 468 Cathode Strip, 432 Resistive Plate Chambers PRESHOWER Silicon strips ~16m² ~137,000 channels FORWARD CALORIMETER p Steel + Ouartz fibres ~2.000 Channels transverse momentum invisible Imbalance ▶ with: CRYSTAL FLECTROMAGNETIC CALORIMETER (ECAL) ~76.000 scintillating PhWO, crystals $\vec{p}_{\mathrm{T}}^{\mathrm{miss}} = -\left(\sum_{i \in \mathrm{particles}} \vec{p}_i\right)_{\mathrm{T}}$ HADRON CALORIMETER (HCAL) Brass + Plastic scintillator ~7,000 channels

- \blacktriangleright Solenoidal magnet
 - $\blacktriangleright~3.8\,\mathrm{T}$ B field
- \blacktriangleright Silicon tracker
 - \blacktriangleright Charged particles' \vec{p}
 - \blacktriangleright Track vertices

- \blacktriangleright Solenoidal magnet
 - \blacktriangleright 3.8 T B field
- \blacktriangleright Silicon tracker
 - \blacktriangleright Charged particles' \vec{p}
 - \blacktriangleright Track vertices
- ► Calorimeters
 - $\blacktriangleright\,$ EM and hadronic
 - ► Good energy resolution
 - ► Large coverage

- \blacktriangleright Solenoidal magnet
 - $\blacktriangleright~3.8\,\mathrm{T}$ B field
- \blacktriangleright Silicon tracker
 - \blacktriangleright Charged particles' \vec{p}
 - \blacktriangleright Track vertices
- ► Calorimeters
 - \blacktriangleright EM and hadronic
 - ► Good energy resolution
 - ► Large coverage
- \blacktriangleright Muon chambers
 - ► ID muons
 - \blacktriangleright Help measure \vec{p}

All signatures characterized by high $p_{\rm T}^{\rm miss}$, but choice of **X** necessitates different reconstruction and background estimation strategies

x refers to one of many fermion or gauge boson choices S. Narayanan (MIT) CIPANP18

All signatures characterized by high $p_{\rm T}^{\rm miss}$, but choice of **X** necessitates different reconstruction and background estimation strategies

 $^{^{2}}x$ refers to one of many fermion or gauge boson choices S. Narayanan (MIT) CIPANP18

A case study: mono-jet

- ► Why start here?
 - ▶ Sensitive to many models
 - ► In many cases, has the strongest collider limits
 - Similar background estimation used in many hadronic mono-X searches

A case study: mono-jet

- ► Why start here?
 - ▶ Sensitive to many models
 - ► In many cases, has the strongest collider limits
 - Similar background estimation used in many hadronic mono-X searches
- ► ISR independent of specific BSM model ⇒ simplified model
 - \blacktriangleright Spin-1 (0) mediator and DM fermion
 - ► 6 free parameters

A case study: mono-jet

- ► Why start here?
 - ▶ Sensitive to many models
 - ► In many cases, has the strongest collider limits
 - ► Similar background estimation used in many hadronic mono-X searches
- ► ISR independent of specific BSM model ⇒ simplified model
 - \blacktriangleright Spin-1 (0) mediator and DM fermion
 - ► 6 free parameters
- \blacktriangleright Jet(s) and DM from BSM vertex
 - \blacktriangleright Fermion-portal to DM
 - \blacktriangleright Non-thermal DM
 - ► ADD gravitons

Two experimental challenges

Reconstructed mono-jet event

Two experimental challenges

Reconstructed mono-jet event

Challenge 1: Triggering

Online: particle flow $p_{\rm T}^{\rm miss}$ with threshold ~ 100 GeV.

Offline: threshold $\sim 250\,{\rm GeV}$

Challenges: maintain low threshold and rate with good $p_{\rm T}^{\rm miss}$ resolution

Two experimental challenges

CMS

Reconstructed mono-**jet** event

Challenge 1: Triggering

Online: particle flow $p_{\rm T}^{\rm miss}$ with threshold ~ 100 GeV.

Offline: threshold $\sim 250\,{\rm GeV}$

Challenges: maintain low threshold and rate with good $p_{\rm T}^{\rm miss}$ resolution

Challenge 2: SM backgrounds

Looks just like signal!

Estimating SM backgrounds

Estimate invisible backgrounds using visible processes in control data

$p_{\rm T}^{\rm miss}$ and hadronic recoil

- Variable of interest in SR is $p_{\rm T}^{\rm miss}$
- ► For primary backgrounds:

 $p_{\rm T}^{\rm miss} = p_{\rm T}^V \otimes \text{jet scale \& resolution}$

• $p_{\rm T}^V$ in control events does not model jet effects

$p_{\rm T}^{\rm miss}$ and hadronic recoil

- Variable of interest in SR is $p_{\rm T}^{\rm miss}$
- ► For primary backgrounds:

 $p_{\mathrm{T}}^{\mathrm{miss}} = p_{\mathrm{T}}^{V} \otimes \mathrm{jet}$ scale & resolution

- ▶ p_{T}^{V} in control events does not model jet effects
- \blacktriangleright Solution: measure hadronic recoil U

$$\vec{U} = \vec{p_{\mathrm{T}}}^{\mathrm{miss}} + \sum_{i=\ell,\gamma} \vec{p_{\mathrm{T}}}^{i}$$

► U = "missing energy without leptons or photons"

Additional control regions

- ▶ Very few $Z \rightarrow \mu \mu$ events above U > 1 TeV
- This is where signal sits \Rightarrow need a good background estimate
- \blacktriangleright Additionally, non-negligible $W \rightarrow \ell \nu$ component in SR

Additional control regions

- Very few $Z \to \mu \mu$ events above U > 1 TeV
- \blacktriangleright This is where signal sits \Rightarrow need a good background estimate
- \blacktriangleright Additionally, non-negligible $W \rightarrow \ell \nu$ component in SR

Theoretical uncertainties

- \blacktriangleright Extrapolation from W or γ to Z is not perfectly understood
- ▶ Prediction is corrected to NLO QCD+EWK [EPJC (2017) 77:829]
- ▶ Higher-order uncertainties modeled as variations on differential ratios γ/Z and W/Z

Theoretical uncertainties

- \blacktriangleright Extrapolation from W or γ to Z is not perfectly understood
- ▶ Prediction is corrected to NLO QCD+EWK [EPJC (2017) 77:829]
- ▶ Higher-order uncertainties modeled as variations on differential ratios γ/Z and W/Z
- \blacktriangleright Ratio prediction & uncertainties are validated using control data

Mono-jet results: spin-1 simplified model

S. Narayanan (MIT)

CIPANP18

What you should remember about mono-jet

- ► Two themes arise in mono-jet
- ► All mono-X searches (shown today) will be variations on these themes

What you should remember about mono-jet

- ► Two themes arise in mono-jet
- ► All mono-X searches (shown today) will be variations on these themes
- Theme 1: Key to sensitivity is differential estimation of $Z + \mathbf{X}$ and $W + \mathbf{X}$
 - ▶ In some cases, these will be irreducible backgrounds
 - ▶ Even when not irreducible, large σ means they dominate

What you should remember about mono-jet

- ► Two themes arise in mono-jet
- ► All mono-X searches (shown today) will be variations on these themes
- Theme 1: Key to sensitivity is differential estimation of $Z + \mathbf{X}$ and $W + \mathbf{X}$
 - ▶ In some cases, these will be irreducible backgrounds
 - \blacktriangleright Even when not irreducible, large σ means they dominate
- ▶ Theme 2: Estimate invisible $Z + \mathbf{X}$ (W+**X**) using visible $Z + \mathbf{X}$ (W+**X**)
 - ▶ $Z \rightarrow \ell \ell$ has small branching fraction, so correlate with other processes
 - ▶ Theoretical predictions of differential ratios are key

Invisible Higgs

- DM fermion could be given mass through Higgs mechanism
- If $2m_{\chi} < m_H$, should observe $H \to \chi \bar{\chi}$
- ▶ Mono-jet targets $gg \to H + ISR$
- ▶ Production mode \Rightarrow mono-**X** channels
- $VH \Rightarrow \text{mono-}V(qq')$ and $\text{mono-}Z(\ell\ell)$
- $\blacktriangleright \text{ VBF} \Rightarrow \text{VBF} + p_{\text{T}}^{\text{miss}}$

Invisible Higgs

- ► DM fermion could be given mass through Higgs mechanism
- If $2m_{\chi} < m_H$, should observe $H \to \chi \bar{\chi}$
- ▶ Mono-jet targets $gg \to H + ISR$
- ▶ Production mode \Rightarrow mono-**X** channels
- $VH \Rightarrow \text{mono-}V(qq')$ and $\text{mono-}Z(\ell\ell)$
- $\blacktriangleright \text{ VBF} \Rightarrow \text{VBF} + p_{\text{T}}^{\text{miss}}$
- ► Mono-V is a category of mono-jet
 - \blacktriangleright Look for ${\bf V}$ as single large-cone jet
 - ► Jet substructure (N-subjettiness and soft-drop mass) to reject backgrounds
 - Background estimation as described before

Mono- $Z(\ell \ell)$

- \blacktriangleright Basic selection:
 - High $p_{\rm T}^{\rm miss}$
 - e^+e^- or $\mu^+\mu^-$ consistent with Z mass
- ▶ BDT classifier for Higgs-specific topology
 - ► Also provided is a $p_{\rm T}^{\rm miss}$ -based analysis for other signals
- ▶ BDT uses kinematics of leptons and $p_{\rm T}^{\rm miss}$ system
 - e.g. $|m_{\ell\ell} m_Z|, m_T(p_T^{\ell_1}, p_T^{\text{miss}}), \cos\theta_{l_1}^{\text{CS}}, \dots$
- Primary backgrounds are $Z(\nu\nu)Z(\ell\ell)$ and $W(\ell\nu)Z(\ell\ell)$

Mono- $Z(\ell \ell)$ background estimation

- \blacktriangleright As with mono-jet, estimate invisible processes with visible analogues
- ▶ 3ℓ (WZ) and 4ℓ (ZZ) control regions to estimate 2ℓ WZ and ZZ
- $p_{\rm T}^{\rm miss}$ is an input to the BDT observables
 - Emulated in CRs by adding lepton(s) back into $p_{\rm T}^{\rm miss}$

$\mathrm{VBF}{+}p_\mathrm{T}^\mathrm{miss}$

- ▶ Two forward, energetic jets with large $p_{\rm T}^{\rm miss}$
- ▶ Backgrounds are similar to inclusive $p_{\rm T}^{\rm miss}$ +jets search, but also sensitive to EW V+jets diagrams

- ▶ Use dijet kinematics to focus phase space
 - $m_{jj}, \Delta \eta_{jj}$ suppress QCD V+jets
 - $\Delta \phi_{jj}$ sensitive to spin of boson

$VBF + p_T^{miss}$ signal extraction W

Signal

Events / GeV

10

10-2

10

1000 2000 3000 4000 5000

▶ Fit the m_{jj} spectra

 \blacktriangleright Control regions estimate both QCD and EW contributions to V+jets background

m_{ii} [GeV]

Upper limits on $\mathcal{B}(H \to \text{inv})$

Combination of channels has observed (expected) limit at $\mathcal{B} < 0.24$ (0.18)

$\operatorname{Mono-photon}$

- Signal models and production mechanism similar to those already discussed
- \blacktriangleright Primary SM backgrounds are $Z/W + \gamma$
 - ► Measured with 2/1 lepton events, respectively
- \blacktriangleright Jet/e mis-ID'd as γ
 - ▶ Data-driven estimate of fake rate
- ▶ Non-collision backgrounds
 - ▶ Beam halo
 - ▶ Detector noise spikes

CIPANP18

Non-collision backgrounds

 Spikes: single APD has a fake signal, resulting in anomalous response and very narrow "shower"

► Beam halo: particles travelling parallel to beam, hit ECAL from side

Summary of vector-mediated DM results

CMS

vector couplings \Leftrightarrow spin-independent DM-nucleon interaction

mono-photon

mono-jet

mono- $Z(\ell \ell)$

Collider searches contribute at low $m_{\rm DM}$

S. Narayanan (MIT)

CIPANP18

mono- $Z(\ell \ell)$

Summary of axial vector-mediated DM results

axial couplings \Leftrightarrow spin-dependent DM-nucleon interaction

mono-jet

mono-photon

DD searches are much less sensitive to SD DM \Rightarrow CMS results are complementary

S. Narayanan (MIT)

- ▶ Assume we have a spin-0 mediator with Yukawa-like couplings to fermions only
- ▶ Then, we should see two signatures:

► Natural to complement mono-jet search with search for top quark pairs plus DM

$t\bar{t}$ +DM signal extraction

- \blacktriangleright Three channels, categorized by t decay: all-hadronic, semi-leptonic, and all-leptonic
- \blacktriangleright BDT classifier to identify trijet systems consistent with top quark decay

Summary of scalar-mediated DM results

Only $t\bar{t}$ +DM is able exclude scalars with $m_{\phi} \lesssim 100 \,\text{GeV}$. Mono-jet is more sensitive than $t\bar{t}$ +DM at high m_{ϕ} .

S. Narayanan (MIT)

CIPANP18

Summary of pseudoscalar-mediated DM results

 $t\bar{t}$ +DM

mono-jet

Presented as upper limits on velocity-averaged DM annihilation cross section. Significantly extend limits from FermiLAT.

S. Narayanan (MIT)

CIPANP18

Mono-top

- $t + p_{\rm T}^{\rm miss}$ heavily suppressed in SM
 - ► $\sigma(tZ(\rightarrow \nu\nu)q) = 0.14 \text{ pb}$
- ► Enhanced mono-**top** implies:
 - \blacktriangleright DM candidate
 - ► Flavor-violating new physics
- Benchmark model: spin-1 simplified model with FCNC

CMS

Mono-top

- $t + p_{\rm T}^{\rm miss}$ heavily suppressed in SM
 - ► $\sigma(tZ(\rightarrow \nu\nu)q) = 0.14 \text{ pb}$
- ► Enhanced mono-**top** implies:
 - ► DM candidate
 - ► Flavor-violating new physics
- Benchmark model: spin-1 simplified model with FCNC

Hadronic decay \Rightarrow larger BR, no $p_{\rm T}^{\rm miss}$

Mono-top

- ► $t + p_{\rm T}^{\rm miss}$ heavily suppressed in SM
 - ► $\sigma(tZ(\rightarrow \nu\nu)q) = 0.14 \text{ pb}$
- ► Enhanced mono-**top** implies:
 - \blacktriangleright DM candidate
 - ► Flavor-violating new physics
- Benchmark model: spin-1 simplified model with FCNC

Trigger requirements \Rightarrow large $p_{\rm T}^{\rm miss}, p_{\rm T}^t$ Large $p_{\rm T}^t \Rightarrow$ decay products collimate

Boosted hadronic top quark identification

CMS

- ▶ Large cone jets have many combinatorial backgrounds
- ▶ Reject using jet substructure and flavor-tagging
- ▶ Novel experimental use of energy correlation function basis [JHEP (2016) 153]

FCNC constraints

- ▶ Constrain large range of FCNC masses and coupling strengths
 - As low as $g \sim 0.05$, as high as $m_V \sim 2.5 \,\mathrm{TeV}$
- $m_V \lesssim 200 \,\mathrm{GeV}$ excluded from measurements of Γ_t

- \blacktriangleright Run 2 has seen a significant improvement in mono-**X** searches at CMS
 - ► Increased luminosity and cross-sections
 - \blacktriangleright New techniques to estimate backgrounds and identify ${\bf X}$

- ▶ Run 2 has seen a significant improvement in mono-X searches at CMS
 - ► Increased luminosity and cross-sections
 - \blacktriangleright New techniques to estimate backgrounds and identify ${\bf X}$
- ▶ What are the key challenges for the remainder of Run 2 and beyond?

- ▶ Run 2 has seen a significant improvement in mono-X searches at CMS
 - ► Increased luminosity and cross-sections
 - \blacktriangleright New techniques to estimate backgrounds and identify ${\bf X}$
- ▶ What are the key challenges for the remainder of Run 2 and beyond?
- ▶ Triggering becomes harder as instantaneous luminosity and pile-up increase
 - ► Mono-X signature has relatively few trigger handles
 - ▶ $p_{\rm T}^{\rm miss}$ depends on online jet resolution

- ▶ Run 2 has seen a significant improvement in mono-X searches at CMS
 - ► Increased luminosity and cross-sections
 - \blacktriangleright New techniques to estimate backgrounds and identify ${\bf X}$
- ▶ What are the key challenges for the remainder of Run 2 and beyond?
- ▶ Triggering becomes harder as instantaneous luminosity and pile-up increase
 - ► Mono-X signature has relatively few trigger handles
 - $p_{\rm T}^{\rm miss}$ depends on online jet resolution
- ▶ Many searches rely on accurate theoretical predictions of backgrounds
 - ▶ $\mathcal{O}(1\%)$ uncertainties on V/Z ratios key for mono-jet sensitivity

- ▶ Run 2 has seen a significant improvement in mono-X searches at CMS
 - ► Increased luminosity and cross-sections
 - \blacktriangleright New techniques to estimate backgrounds and identify ${\bf X}$
- ▶ What are the key challenges for the remainder of Run 2 and beyond?
- ▶ Triggering becomes harder as instantaneous luminosity and pile-up increase
 - ► Mono-X signature has relatively few trigger handles
 - $p_{\rm T}^{\rm miss}$ depends on online jet resolution
- ▶ Many searches rely on accurate theoretical predictions of backgrounds
 - $\mathcal{O}(1\%)$ uncertainties on V/Z ratios key for mono-jet sensitivity
 - \blacktriangleright Uncertainties are larger for other V+jet topologies
 - Among limiting factors for $VBF+p_T^{miss}$, mono-top, mono-Higgs

- ▶ Run 2 has seen a significant improvement in mono-X searches at CMS
 - ► Increased luminosity and cross-sections
 - \blacktriangleright New techniques to estimate backgrounds and identify ${\bf X}$
- ▶ What are the key challenges for the remainder of Run 2 and beyond?
- ▶ Triggering becomes harder as instantaneous luminosity and pile-up increase
 - ► Mono-X signature has relatively few trigger handles
 - $p_{\rm T}^{\rm miss}$ depends on online jet resolution
- ▶ Many searches rely on accurate theoretical predictions of backgrounds
 - ▶ $\mathcal{O}(1\%)$ uncertainties on V/Z ratios key for mono-jet sensitivity
 - \blacktriangleright Uncertainties are larger for other V+jet topologies
 - Among limiting factors for $VBF+p_T^{miss}$, mono-top, mono-Higgs
 - VV ratios \Rightarrow mono- $Z(\ell\ell)$ and mono- γ
 - $t\bar{t} V$ prediction \Rightarrow dileptonic $t\bar{t}$ +DM

BACKUP

S. Narayanan (MIT)

Jet substructure

• Top quark $\rightarrow 3q \Rightarrow top jet has 3$ "prongs"

▶ **Substructure** observables are sensitive to such features

S. Narayanan (MIT)

CIPANP18

Useful substructure observables

CMS

- \blacktriangleright N-subjettiness [Thaler et al, arXiv:1011.2268]
 - ▶ $\tau_{\mathbf{N}}$: compatibility of jet with **N**-axis hypothesis
- ▶ HEPTopTagger [Anders *et al*, arXiv:1312.1504]
 - \blacktriangleright Reconstruct W and t decay products inside jet
- ► Energy correlation functions [Moult *et al*, arXiv:1609.07473]
 - $e(\alpha, \mathbf{N}, a)$ sensitive to **N**-point correlations in the jet

ECF ratios

ECFs are N-point distance-weighted correlation functions among particles of the jet

$$e(a, \mathbf{N}, \alpha) \sim \sum_{\mathbf{N} \text{ particles } \in J} \left[\prod_{p \in \text{particles}} \frac{E_p}{E_J} \right] \times \min \left\{ \prod_{p, q \in \text{particles}}^a \theta(p, q) \right\}^{\alpha}$$

- ▶ Top jet: $\mathbf{N} = 3$ correlations are strong, $\mathbf{N} = 4$ are weak
 - Can't pick 4 energetic particles that are **far apart**

•
$$e(\mathbf{N}=4)/e(\mathbf{N}=3) \to 0$$

• q/g jets: $\mathbf{N} = 3$ and $\mathbf{N} = 4$ are both weak

•
$$e(\mathbf{N}=4)/e(\mathbf{N}=3) > 0$$

Non-trivial ECF ratios

▶ Interesting ratios do not depend on jet's momentum:

$$\frac{e(a,\mathbf{N},\alpha)}{e(b,\mathbf{M},\beta)^x}, \text{ where } M \leq N \text{ and } x = \frac{a\alpha}{b\beta}$$

 \blacktriangleright Turns out many correlation function ratios can separate signal and background

Generalized ECFs

• Extension of original ECFs to allow for different angular orders:

$$e(o, N, \beta) \equiv {}_{o}e_{N}^{\beta} = \sum_{i_{1} < i_{2} < \dots < i_{N} \in J} \left[\prod_{1 \le k \le j} z_{i_{k}}\right] \times \min\left\{\prod_{k,l \in \text{pairs}\{i_{1},\dots,i_{N}\}}^{o} \Delta R_{kl}^{\beta}\right\}$$

► e.g.

$${}_{2}e_{3}^{1} = \sum_{a < b < c \in J} z_{a} z_{b} z_{c} \times \min\{\Delta R_{ab} \Delta R_{ac}, \Delta R_{ab} \Delta R_{bc}, \Delta R_{bc} \Delta R_{ac}\}$$

- ► Summary of parameters:
 - ▶ N = order of the correlation function. An N-pronged jet should have $e_N \gg e_M$, for N < M
 - o = order of the angular factor.
 - β = angular power

Mono-Higgs

- ▶ Signature arises from a more specific set of models
 - ▶ Cannot rely on simplified models for interpretation
- ▶ Still, can focus on "minimal" extensions to SM:
 - ▶ Two-Higgs doublet models
 - Addition of baryonic Z' to SM

Mono-Higgs $(\gamma\gamma/\tau\tau)$

- $m_{\gamma\gamma}$ fit using smooth power law
- \blacktriangleright SM H included as background
- Events are categorized by $p_{\rm T}^{\rm miss}$

- $M_{\rm T}^{\rm t}$ used as proxy for m_H
- \blacktriangleright Events are categorized by τ decay mode

Mono-Higgs(bb)

- ▶ Different reconstruction used based on $m_{Z'}$ hypothesis
- Low $m_{Z'} \Rightarrow \log p_{\mathrm{T}}^H$
 - Resolve the H decay as dijet system
- ► High $m_{Z'} \Rightarrow \text{high } p_{\mathrm{T}}^H$
 - \blacktriangleright Reconstruct H has a single large jet

Combination of channels

 $\gamma\gamma + \tau\tau ~(36/\text{fb})$

S. Naravanan (MIT)