Dark Sector Searches at MESA

Luca Doria

Institut für Kernphysik

Johannes-Gutenberg Universität Mainz

JG U C PRISMA

Cluster of Excellence

Precision Physics, Fundamental Interactions and Structure of Matter

Introduction

A1 Collaboration 3-spectrometer setup Experiments with electrons

Introduction

Introduction

MESA

Mainz Energy-Recovering Superconducting Accelerator

MESA

Mainz Energy-Recovering Superconducting Accelerator

Energy Recovery Linac

Energy Recovery Linac

Light Dark Matter

(Light) Dark Matter

(Light) Dark Matter

JG

(Light) Dark Matter

Dark Sector

"Portals"

Vector Portal Higgs Portal 6 **Neutrino Portal Axion Portal**

$$\frac{1}{2} \epsilon_Y F_{\mu\nu} F^{'\mu\nu}$$

$$\epsilon_h |h|^2 |\phi|^2 \text{ Precision Higgs Physics}$$

$$\epsilon_\nu h L \psi \text{ New Neutrino States}$$

$$\frac{G_{a\gamma\gamma}}{4} a F_{\mu\nu} \tilde{F}^{\mu\nu}$$

Dark Sector

"Portals"

Vector Portal	$\frac{1}{2}\epsilon_Y F_{\mu\nu} F^{\prime\mu\nu}$
Higgs Portal	$\epsilon_h h ^2 \phi ^2$ Precision Higgs Physics
Neutrino Portal	$\epsilon_{ u} h L \psi~$ New Neutrino States
Axion Portal	$\frac{G_{a\gamma\gamma}}{4}aF_{\mu\nu}\tilde{F}^{\mu\nu}$

$\mathcal{L} \sim \bar{\chi}(i \not\!\!D - m_{\chi})\chi + \frac{1}{2} \epsilon_Y F'_{\mu\nu} B_{\mu\nu} + \frac{1}{2} m_{A'}^2 A'_{\mu} A^{'\mu}$ $D_{\mu} = \partial_{\mu} + i g_D A'_{\mu} \qquad \text{New U(1) massive gauge boson}$

After EW Symmetry Breaking:

$$\epsilon = \epsilon_Y \cos \theta_W \ll 1 \qquad \qquad \frac{1}{2} \epsilon F'_{\mu\nu} F_{\mu\nu}$$

4 parameters:
$$m_{A'} \ \alpha_D = \frac{g_D^2}{4\pi} \ m_\chi \ \epsilon_Y$$

The MAGIX Experiment

The MAGIX Experiment

Magnetic optics studies

- Competitive luminosity (mA beam current)
- Double arm spectrometer (ns time coincidence)
- High-resolution tracking at low energies $dp/p = 10^{-4}$
- Acceptance +/- 50mr
- Focal plane detectors current design options:
 - low material budget GEMs
 - Time Projection Chamber with GEM readout

JG

MAGIX Physics Program

Physics:

Nucleon Form factors (proton radius puzzle)
 <u>Dark photon</u> (visible and invisible decays)
 Nuclear Astrophysics

Other possibilities

- Nuclear physics (3-body forces)
- Nucleon polarizabilities

BDX@MESA

A Bream, Dump Experiment at MESA

IG

A Bream, Dump Experiment at MESA

IG

JGU Opportunity: A BD Experiment at MESA

Beam Dump

- 20 $X_{\rm 0}$ Beam Dump
- Material: Aluminum (+ Water)
- Addition of a W plate?
- Energy on Dump: ~135 MeV
- 10⁴ h of operation; 10²² EOT

Experimental Area

- 70 X_0 (~8m) barite concrete
- \sim no neutrons at detector position Ξ
- no beam dump backgrounds
- No neutrinos

Detector:

- Maximize active volume
- Maximize Density
- Directionality

Detector Concept:

- 81 lead glass blocks
- 30x30x150cm each
- 5" PMTs or SiPM readout
- Other crystals under study

Background Rejection

- Beam on/off
- Comics Veto
- Segmentation

Predicted Limits

Predicted Limits

Potential for significant contributions to LDM searches:

- Visible Decays: expand current limits in new territory (MAGIX)
- Invisible Decays: still large parameter space to explore (MAGIX + BDX@MESA)
- Unique test for both DM production and interaction.
- High sensitivity: potential to "hit" the thermal target

Beam at MESA ideal:

- Very large luminosity, CW beam, and excellent stability
- Recirculation for MAGIX and parasitic operation + beam-off for BDX@MESA
- Low backgrounds (below pion threshold: no neutrinos/muons)

Near-Future Directions:

-

- MAGIX: Magnetic optics and detector R&D ongoing (GEMs, TPC)
 - BDX@MESA: Extend G4 Simulation+MadGraph , Calorimeter R&D started
 - many possibilities to investigate (Cherenkov/Scintillation crystals)

Many Experiments running or planned:

NA62, HPS, SeaQuest, MiniBoone, DarkLight, APEX,

B-Factories, PADME, LDMX, SHiP,

MESA and Dark Sector Experiments could start by >2020 !

Thank You!

Thermal Relic Target

Secluded Annihilation

 $m_{\chi} > m_{Med} \qquad \langle \sigma v \rangle \sim g_D^4 / m_{\chi}^4$

No SM coupling dependence: arbitrary coupling possible. Hard to test experimentally.

Thermal Relic Target

Secluded Annihilation

 $m_{\chi} > m_{Med} \qquad \langle \sigma v \rangle \sim g_D^4 / m_{\chi}^4$

No SM coupling dependence: arbitrary coupling possible. Hard to test experimentally.

Direct Annihilation

$$m_{\chi} < m_{Med} \qquad \langle \sigma v \rangle \sim \frac{g_D^2 g_{SM}^2 m_{\chi}^2}{m_{Med}^4}$$

There is a minimum SM coupling compatible with thermal history.

Thermal Relic Target

Secluded Annihilation

 $m_{\chi} > m_{Med} \qquad \langle \sigma v \rangle \sim g_D^4 / m_{\chi}^4$

No SM coupling dependence: arbitrary coupling possible. Hard to test experimentally.

Direct Annihilation

Simulation

Light Dark Matter

- If light, smaller annihilation CS
- DM overabundance
- "Overclosed" Universe

The way out:

- postulate a new interaction
- annihilation via a new force carrier
- If coupling small enough, DM can be light!

