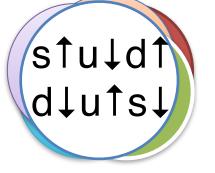
Stable Sexaquark as Dark Matter

Glennys R. Farrar New York University

CIPANP, May 29, 2018

1

Stable Sexaquark as Dark Matter



How could we have missed a stable particle made of quarks? [Hints from Astrophysics] Primordial Nucleosynthesis Dark-Matter to Ordinary-Matter ratio Detecting S dark matter

Unique among multi-quark states:

Fermi statistics is compatible with a <u>totally symmetric</u> spatial wave function AND

> antisymmetric (singlet) in: *color flavor spin* totally symmetric in space

(Most-Attractive Channel)³:

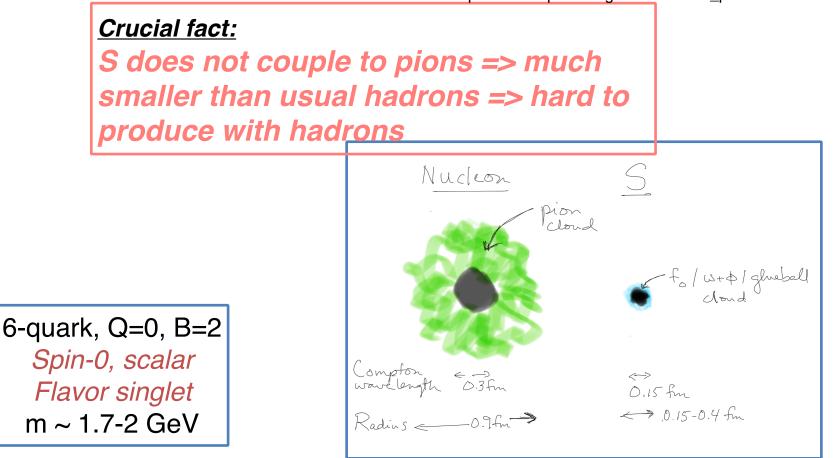
6-quark, Q=0, B=2 *Spin-0, scalar Flavor singlet* m_S < 2 GeV???

Same quark content as H-dibaryon^{*} (Jaffe 1977), but different physics: not a loosely bound di-A!

*mass ~ 2150 MeV in bag model — decays in 10⁻¹⁰ s

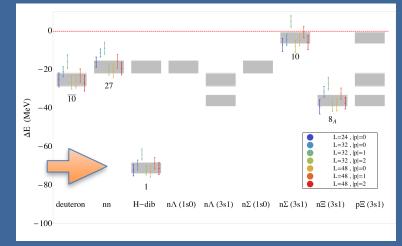
Why consider $m_S \sim 2 m_p$?

- Light quarks almost massless, i.e. relativistic
 - $m_{u,d} \approx 0, m_s = 91 \text{ MeV}$
- S has same QNs as ground state glueball
 - why not $m_S \approx m_{glueball} + 180 \text{ MeV} = (1.5-1.7) + 0.18 \text{ GeV} \leq 2 \text{ m}_p$
- 3 x di-quark mass = 1.2 2-ish GeV
- $m_S < 2 (m_p + m_e)$: S is absolutely stable
- $m_S > 2 (m_p 8 \text{ MeV})$: nuclei are stable


Interesting DM candidate

- triple-singlet (color,flavor,spin): MAC, lattice, almost all models => m_S < 2 m_Λ
- extensive experimental searches **exclude** weak-lifetime & m > 2 GeV
- → bound state exists and mass < 2 GeV ($\tau > \tau_{Univ}$ or stable)

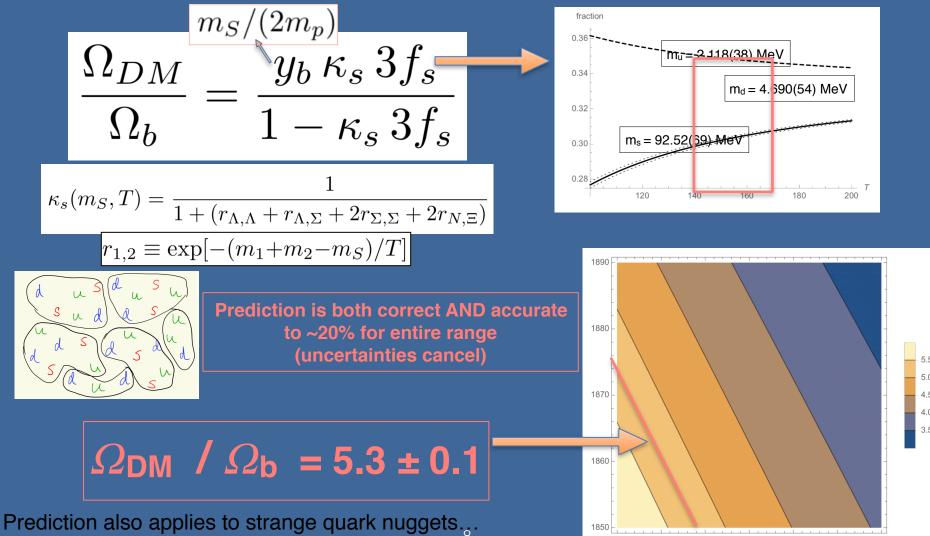
Stable Sexaquark Hypothesis


6	sexa- ^[19]	_	sen- ^[20]	sext- ^[21]	hex- ^[22]	hexakis- hexaplo- hexad- e.g. hexahedron	hect- ^[23] hectaio-	shat-
---	-----------------------	---	----------------------	-----------------------	----------------------	---	-----------------------------------	-------

^a ^b Sometimes Greek *hexa*- is used in Latin compounds, such as *hexadecimal*, due to taboo avoidance with the English word *sex*. https://en.wikipedia.org/wiki/Numeral_prefix

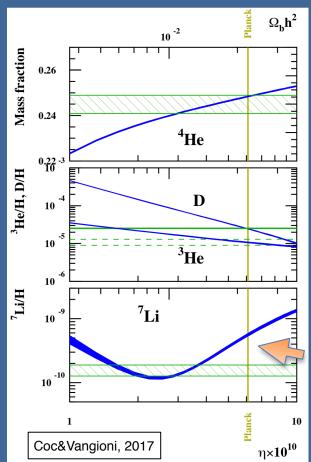
Stable S?

- $au > au_{Univ}$
 - $M_S < 2 m_p + 2 m_e = 1877.6 \text{ MeV} \rightarrow \text{absolutely stable}$
 - $M_s > 2 m_p + 2 BE = 1860 MeV \rightarrow nuclei absolutely stable$
 - higher and lower mass may also work $\Gamma \sim G_{F^4} \times (wave function overlap)^2$
- Lattice predicts binding (Beane+13)
 - (m_q = 850 MeV so not realistic)
 - 80 MeV binding
- Experiments exclude decaying S
 => it must be STABLE ! ;-)



Conditions on QCD Dark Matter

- $\checkmark \tau_{DM} > \tau_{Univ}$, cold, neutral
- primordial nucleosynthesis
- Particle must not be already excluded
 - accelerator searches
 - exotic isotopes
 - DM searches
 - indirect impacts (heating planets, helioseismology,...)
 - stability of nuclei
 - equation of state of neutron stars (and their stability)
- ✓ Correct relic density (for natural $m_{DM} \& \sigma_{f.o.}$)



follows from **stat mech**, **quark masses** & temperature of **QGP-hadronization** transition

BBN's problem with primordial ⁷Li

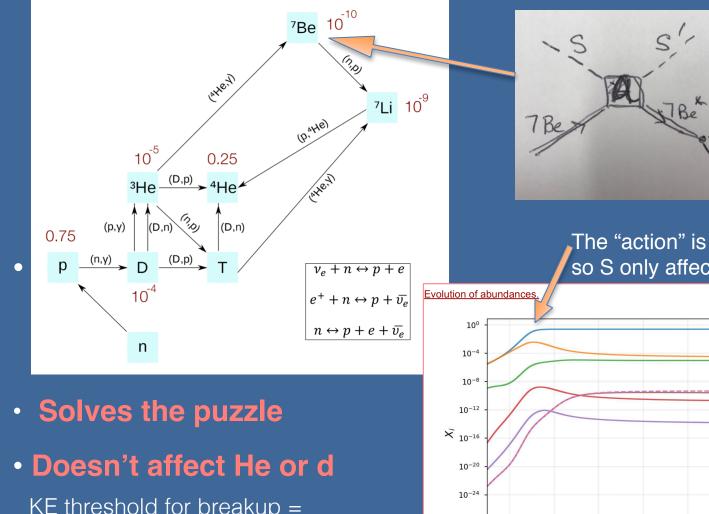
- Big Bang Nucleosynthesis works brilliantly *except 10σ problem*
 - Predicted abundance of ⁷Li = (5.61 ± 0.26) 10⁻¹⁰
 - Observed abundance of = (1.58 ± 0.31) 10⁻¹⁰
- Discrepancy is now very serious:
 - Nuclear rates all well-measured
 - $\eta = n_b/n_{\gamma} = (6.58 \pm 0.02) \ 10^{-10}$ from CMB
 - Astrophysics now secure (Spite plateau):
 - small scatter
 - ⁷Li constant over > 3 decades of low metallicity
- **S solves the puzzle** (GRF + Richard Galvez, in preparation)
 - No other (reasonable) solution known

S dark matter breaks up 7Li & 7Be

10-28

6

8


10

12

me/T

14

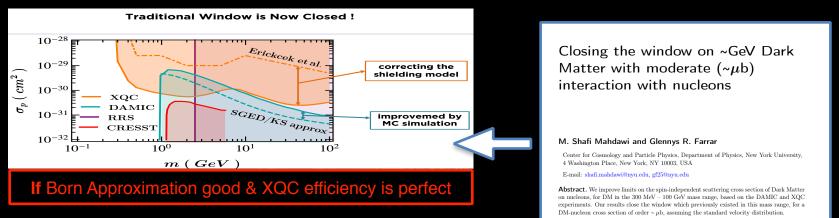
16

The "action" is at T~100 keV so S only affects weakly bound nuclei

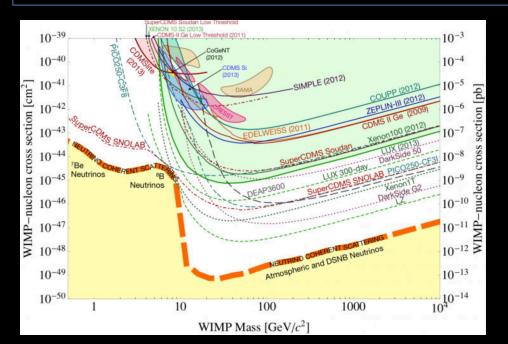
YHE

Standard Be7 case is dashed line

Be7


20

18


KE threshold for breakup = 1.58, 2.46, 4.47, 5.75, 19.3 [2.2] MeV 7Be 7Li 3He T 4He [d]

Stable S as Dark Matter

Shielded (e.g. underground) detectors are not sensitive (energy loss)

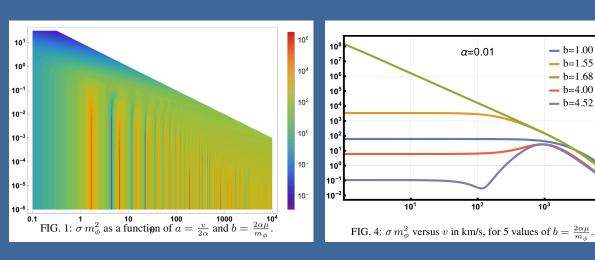
Dark Matter with Hadronic Interactions

(GRF + Xingchen Xu, to appear shortly)

$$V(r) = \frac{\alpha}{r} e^{-r m_{\phi}}$$

 $m_{\phi} = 1$ GeV (flavor-singlet ω - ϕ combo), sourced by p or A

10


• V/C (DM) ~ 10^{-3}

 10^3 km/s (galaxy clusters) down to 1 km/s (atm & z = 17)

 $2\alpha\mu$

 $a = \frac{v}{2\alpha}$ and b =

- must solve Schroedinger Eqn. Born approximation generically fails badly
- cross section depends only on combos

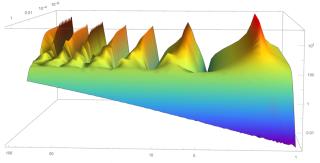


FIG. 2: 3D plot of σm_{ϕ}^2 in the *a*, *b* plane; *b* increases to the left and *a* decreases toward the back.



FIG. 3: Ratio of Born Approximation and Schroedinger Equation

Plenty of Room for HIDM, for now...

(GRF + Xingchen Xu, to appear shortly)

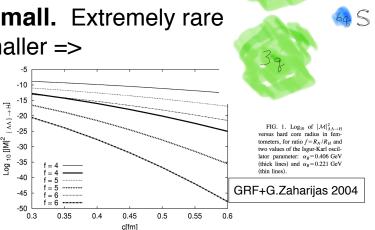
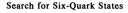

Allowed regions of coupling from XQC (best Direct Detection) Caution: A-depedence very sensitive to nuclear form factor. Born approximation often misleading, by orders of magnitude. point $\alpha = 1$ extend 10⁸ 10 point $\alpha = 0.1$ ---- exter Born 10⁶ 10⁴ U A/U 1 100 0.10 0.01 0.01 m_{ϕ} =1GeV m_{χ} =2GeV v=30km/s 0.1 10 0.5 1 5 50 100 20 40 60 80 0 ms A

FIG. 7: Allowed regions (blue) in the coupling-DM mass plane α (vertical axis) and m_{DM} in GeV (horizontal axis) from XQC using

13

S has not been discovered at accelerators because it is <u>elusive</u>

- Many negative searches, but all are inapplicable. They either:
 - looked for H-dibaryon through decays (but S is stable)
 - restricted to mass > 2 GeV (but $m_S < 2$ GeV)
 - required fast production in S=-2 hypernuclei (but small overlap with baryons)
- Wavefunction overlap with baryons is very small. Extremely rare fluctuation required for S ⇔ ΛΛ; S⇔NN is G_{F⁴} smaller =>
 - nuclei can be stable ($\tau > 10^{29}$ yr) even for $m_S > 2 m_p$
 - hard to produce in fixed target experiments
- S is similar to (much more copious) neutrons
- Promising accelerator detection strategies
 - Apparent lack of baryon number and strangeness conservation: • $\Delta B = \pm 2$ with $\Delta S = \mp 2$
 - Reconstruct missing mass, e.g.:
 - $\Upsilon \rightarrow \Lambda \overline{S}$ (+ pions) $M_{S^2} = (p_{\Upsilon} p_{\Lambda 1} p_{\Lambda 2} \sum p_{\pi_i})^2$



NorA

Experimental searches so far

Looking for Jaffe's H-dibaryon (same QN but assumed to be unstable and r~1 fm)

- Require M > 2 GeV:
 - Gufstafson+ FNAL1976 : Beam-dump + tof *Limit on* production of neutral stable strongly interacting particle with mass > 2 GeV.
 - Carroll+ BNL 1978: No narrow missing mass peak above 2 GeV in pp -> K K X
- Require H-dibaryon decay:
 - Badier+ NA3 1986
 - Bernstein+ FNAL 1988: Limit on production of neutral with $10^{-8} < \tau < 2 \times 10^{-6} s$
 - Belz+ BNL 1996: H -/-> Λ n or Σ n [c.f., issue raised by L. Littenberg]
 - Kim+ Belle 2013: no narrow resonance in $\Upsilon \rightarrow \Lambda p K$
- Limits from production in doubly-strange hypernuclei:
 - Ahn+ BNL 2001
 - Takahashi+ KEK 2001

A. S. Carroll, I-H. Chiang, R. A. Johnson, T. F. Kycia, K. K. Ki, L. S. Littenberg, and M. D. Marx Brookhaven National Laboratory, Upton, New York 11973

and

R. Cester, R. C. Webb, and M. S. Witherell Princeton University, Princeton, New Jersey 08540 (Received 26 July 1978)

We have searched the missing-mass spectrum of the reaction $pp \rightarrow K^*K^*X$ for a narrow six-quark resonance in the mass range 2,0-2,5 GeV/ c^2 . No narrow structure was observed. Upper limits for the production cross section of such a state depend upon mass and vary from 30 to 130 nb.

VOLUME 76, NUMBER 18 PHYSICAL REVIEW LETTERS 29 April 1990

Search for the Weak Decay of an H Dibaryon

J. Belz,⁵ & R. D. Cousins,³ M. V. Diwan,⁵ M. Eckhause,⁹ K. M. Eckhund,⁵ A. D. Hancock,⁸ V. L. Highland,⁴ C. Hoff,⁷ G. W. Hoffmann,⁷ G. M. Irwin,⁵ J. R. Kane,⁸ S. H. Kettell,^{6,1} J. R. Klein,^{4,4} Y. Kuang,⁷ K. Lang,⁷ R. Martin,⁸ M. May,¹ J. McDonough,⁷ W. R. Molzon,⁵ P. J. Riley, ⁷ J. L. Ritchie,⁷ A. J. Schwattz,⁴ A. Trandafir,⁶ B. Ware,⁷ R. E. Weish,⁸ S. N. White,¹ M. T. Witkowski,⁸ S. G. Wojcicki,³ and S. Worm³ ¹Brookhaven National Laboratory, Jphon. New York 11973 ²Driversity of California, Lrvine, California 9024 ²Driversity of California, Lrvine, California 9024 ²Princeton University, Sprinceton, New Jersey 08544 ³Stanford University, Sprince, California 93409 ⁶Temple University, Princeton, California 9371 ²University of Texas at Austin, Javain, Texas T8712 ⁸College of William and Mary, Willamsbury, Virginia 23187 (Received & December 1995) We have searched for a neutral H dibaryon decaying via H → Λn and H → Σ⁹n. Our search has yielded two candidate events from which we set an upper limit on the H production cross section.

has yielded two candidate events from which we set an upper limit on the H production cross section. Normalizing to the inclusive A production cross section, we find $(d\sigma_H/d\Omega)/(d\sigma_\Lambda/d\Omega) < 6.3 \times 10^{-6}$ at 90% C.L., for an H of mass ~2.15 GeV/c². [S0031-9007(96)00050-6]

VOLUME 87, NUMBER 13 PHYSICAL REVIEW LETTERS 24 SEPTEMBER 2001

Production of ${}_{\Lambda\Lambda}{}^{4}$ H Hypernuclei

J. K. Ahn,¹³ S. Ajimura,¹⁰ H. Akikawa,⁷ B. Bassalleck,⁹ A. Berdoz,² D. Carman,² R. E. Chrien,¹ C. A. Davis,^{8,14} P. Eugenio,² H. Fischer,³ G. B. Franklin,² J. Franz,³ T. Fukuda,¹⁵ L. Gan,⁴ H. Hotchi,¹² A. Ichikawa,⁷ K. Imai,⁷ S. H. Kahana,¹ P. Khaustov,² T. Kishimoto,¹⁰ P. Koran,² H. Kohri,¹⁰ A. Kourepin,⁶ K. Kubota,¹² M. Landry,⁸ M. May,¹ C. Meyer,² Z. Meziani,¹¹ S. Minami,¹⁰ T. Miyachi,¹² T. Nagae,⁵ J. Nakano,¹² H. Outa,⁵ K. Paschke,² P. Pile,¹ M. Prokhabatilov,⁶ B. P. Quinn,² V. Rasin,⁶ A. Rusek,¹ H. Schmitt,³ R. A. Schumacher,² M. Sekimoto,⁵ K. Shileev,⁶ Y. Shimizu,¹⁰ R. Sutter,¹ T. Tamagawa,¹² L. Tang,⁴ K. Tanida,¹² K. Yamamoto,⁷ and L. Yuan⁴ ¹Brookhaven National Laboratory, Upton, New York 11973 ²Department of Physics, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213 ³Department of Physics, University of Freiburg, D-79104 Freiburg, German, ⁴Department of Physics, Hampton University, Hampton, Virginia 23668 ⁵High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki 305-0801, Japan ⁶Institute for Nuclear Research (INR), Moscow 117312, Russia ⁷Department of Physics, Kyoto University, Sakyo-Ku, Kyoto 606-8502, Japan ⁸Department of Physics and Astronomy, University of Manitoba, Winnipeg, MB, Canada R3T 2N2 ⁹Department of Physics and Astronomy, University of New Mexico, Albuquerque, New Mexico 87131 ¹⁰Department of Physics, Osaka University, Toyonaka, Osaka 560-0043, Japan ¹¹Department of Physics, Temple University, Philadelphia, Pennsylvania 19122 ¹²Department of Physics, University of Tokyo, Tokyo 113-0033, Japan ¹³Department of Physics, Pusan National University, Pusan 609-735, Korea ¹⁴TRIUMF, 4004 Wesbrook Mall, Vancouver, BC, Canada V6T 2A3 ¹⁵Laboratory of Physics, Osaka Electro-Communication University, Neyagawa, Osaka 572-8530, Japan (Received 14 May 2001; published 5 September 2001)

An experiment demonstrating the production of double-A hypernuclei in (K^-, K^+) reactions on "Be was carried out at the D6 line in the BNL alternating-gradient synchrotron. The technique was the observation of pions produced in sequential mesonic weak decay, each pion associated with one unit of strangeness change. The results indicate the production of a significant number of the double hypernucleus _A/H and the winh hypernuclei (H and \dot{H} . The relevant decay chains are discussed and a simple model of the production mechanism is presented. An implication of this experiment is that the existence of an S = -2 diabayon more than a few MeV below the AA mass is unlikely.

Experimental Searches

- Require M > 2 GeV:
 - Gufstafson+ FNAL1976 : Beam-dump + tof Limit on providence of neutral stable strongly interacting particle with mass > 2 GeV.
 - Carroll+ BNL 1978: No narrow missing mass peak ab vel GeV in pp -> K K X
- Require H-dibaryon decay:
 - Badier+ NA3 1986
 - Bernstein+ FNAL 1988: Limit to productic of neutral with $10^{-8} < \tau < 2 \times 10^{-6} s$
 - Belz+ BNL 1996: H -/-λ Λ Σ [c.f., issue raised by L. Littenberg]
 - Kim+ Belle 2013 no narrow resonance in Υ
- Limits from production in doubly-strange hypernuclei:

Ah. + Быс 2001 Такалаshi+ КЕК 2001 ng, N. Johnson, T. F. Kycia, K. K. Ki, tenberg, and M. D. Marx Laboratory, Upton, New York 11973

States

and

Six-Or

Bearch

L. S.

khaven Nati

R. Sester, R. C. Webb, and M. S. Witherell princeton University, Princeton, New Jersey 08540 (Received 26 July 1978)

c have searched the missing-mass spectrum of the reaction $pp \to K^+K^+X$ for a narrow squark resonance in the mass range 2,0-2,5 GeV/ c^2 . No narrow structure was obted. Upper limits for the production cross section of such a state depend upon mass and vary from 30 to 130 nb.

VOLUME 76, NUMBER 18 PHYSICAL REVIEW LETTERS 29 April 199

Search for the Weak Decay of an H Dibaryon

 J. Beiz,^{6,*} R. D. Cousins, ³ M. V. Diwan,^{5,1} M. Eckhause,⁸ K. M. Ecklund,⁵ A. D. Hancock,⁸ V. L. Highland,^{6,4} C. Hoff,⁸
 G. W. Hoffmann,⁷ G. M. Irwin,⁵ J. R. Kane,⁸ N. I. Kettell,^{6,4} J. R. Klein,^{4,4} Y. Kuang,⁸ K. Lang,⁷ R. Martin,⁸ M. May,¹
 J. McDonough,⁷ W. R. Molzon,⁹ P. J. Riley, ⁷ J. L. Ritchie,⁷ A. J. Schwartz, ⁴ A. T. Tandafir,⁶ B. Ware,⁷ R. E. Welsh,⁸
 S. N. White,¹ M. T. Witkowski,⁸ S. G. Wojcicki,⁵ and S. Worr,⁷ R. E. Welsh,⁸
 S. N. White,¹ M. T. Witkowski,⁸ G. G. Wojcicki,⁵ and S. Worr,⁷ R. E. Welsh,⁸
 ²University of California, Irvine, California 92074 ⁴Princetin University, *Princeton, New Jersey* 08544
 ⁵Stauford University, Stauford, California 94309
 ⁶Temple University, *Princeton, New Jersey* 08544
 ⁸Scollege of Williamsbarg, Vrignia 23187 (Received & December 1995)
 ⁸College of Williamsbarg, Vrignia 23187
 ⁸College of Williamsbarg, Vrignia 23187

We have searched for a neutral *H* dibaryon decaying via $H \to \Lambda n$ and $H \to \Sigma^{\eta} n$. Our search has yielded two candidate events from which we set an upper limit on the *H* production cross section. Normalizing to the inclusive Λ production cross section, we find $(d\alpha_H/d\Omega)/(d\alpha_A/d\Omega) < 6.3 \times 10^{-6}$ at 90% C.L., for an *H* of mass $\approx 2.15 \text{ GeV}/c^2$. [S0031-9007(96)00050-6]

OLUME 87, NUMBER 13 PHYSICAL REVIEW LETTERS

Production of $\Lambda \Lambda^4$ H Hypernuclei

24 SEPTEMBER 2001

J. K. Ahn,¹³ S. Ajimura,¹⁰ H. Akikawa,⁷ B. Bassalleck,⁹ A. Berdoz,² D. Carman,² R. E. Chrien,¹ C. A. Davis,^{8,14} P. Eugenio,² H. Fischer,³ G. B. Franklin,² J. Franz,³ T. Fukuda,¹⁵ L. Gan,⁴ H. Hotchi,¹² A. Ichikawa,⁷ K. Imai,⁷ S. H. Kahana,¹ P. Khaustov,² T. Kishimoto,¹⁰ P. Koran,² H. Kohri,¹⁰ A. Kourepin,⁶ K. Kubota,¹² M. Landry,⁸ M. May,¹ C. Meyer,² Z. Meziani,¹¹ S. Minami,¹⁰ T. Miyachi,¹² T. Nagae,⁵ J. Nakano,¹² H. Outa,⁵ K. Paschke,² P. Pile,¹ M. Prokhabatilov,⁶ B. P. Quinn,² V. Rasin,⁶ A. Rusek,¹ H. Schmitt,³ R. A. Schumacher,² M. Sekimoto,⁵ K. Shileev,⁶ Y. Shimizu,¹⁰ R. Sutter,¹ T. Tamagawa,¹² L. Tang,⁴ K. Tanida,¹² K. Yamamoto,⁷ and L. Yuan⁴ ¹Brookhaven National Laboratory, Upton, New York 11973 ²Department of Physics, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213 ³Department of Physics, University of Freiburg, D-79104 Freiburg, German ⁴Department of Physics, Hampton University, Hampton, Virginia 23668 ⁵High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki 305-0801, Japan ⁶Institute for Nuclear Research (INR), Moscow 117312, Russia ⁷Department of Physics, Kyoto University, Sakyo-Ku, Kyoto 606-8502, Japan ⁸Department of Physics and Astronomy, University of Manitoba, Winnipeg, MB, Canada R3T 2N2 ⁹Department of Physics and Astronomy, University of New Mexico, Albuquerque, New Mexico 87131 ¹⁰Department of Physics, Osaka University, Toyonaka, Osaka 560-0043, Japan ¹¹Department of Physics, Temple University, Philadelphia, Pennsylvania 19122 ²Department of Physics, University of Tokyo, Tokyo 113-0033, Japan ¹³Department of Physics, Pusan National University, Pusan 609-735, Korea ¹⁴TRIUMF, 4004 Wesbrook Mall, Vancouver, BC, Canada V6T 2A3 ¹⁵Laboratory of Physics, Osaka Electro-Communication University, Neyagawa, Osaka 572-8530, Japan (Received 14 May 2001; published 5 September 2001)

An experiment demonstraing the production of double-A hypernuclei in (K^-, K^+) reactions on "Be was carried out at the D6 line in the BNL alternating-gradient synchrotron. The technique was the observation of pions produced in sequential mesonic weak decay, each pion associated with one unit of strangeness change. The results indicate the production of a significant number of the double hypernucleus $_{A}$ M and the twin hypernuclei (A and A). The relevant decay chains are discussed and a simple model of the production mechanism is presented. An implication of this experiment is that the existence of an S = -2 dimayon more than a few MeV below the AA mass is unlikely.

Cosmology & structure formation

- DM-baryon interaction: momentum transfer => slight drag on DM during structure formation
 - Dvorkin, Blum, Kamionkowski (2014):
 - · Ly-alpha forest: $\sigma < \sim 10$ mb if v-indept no problem for S
 - Buen-Abad, Marques-Tavares, Schmaltz (2015):
 - $\cdot\,$ momentum transfer helps reconcile H_0 & σ_8
 - Boring or an opportunity? To be determined...
- S-S self interactions + S-baryon interactions:
 - may have similar benefits as Self Interacting DM
 - core-cusp, "too-big-to-fail" & missing sub-halos problems.

Galaxies & Clusters

DM-gas scattering provides a source of heating, needed for

- Milky Way's extended hot gas halo -2×10^6 K
- Quenching star formation
- Avoiding "cooling flow catastrophe" in X-ray clusters

Key points to take home

There may a tightly bound 6-quark state S= uuddss

- Unique, symmetric structure \Rightarrow other hadrons don't provide guidance
 - mass is not driven by chiral symmetry breaking (unlike baryons)
 - constituent quark model probably completely misleading
- If $M_S < 2 m_p + 2 m_e$, S is absolutely stable

If S is stable, its an excellent Dark Matter candidate

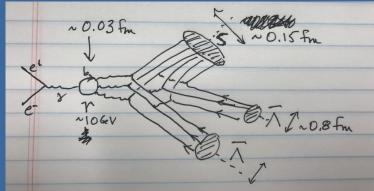
- Relic abundance is natural. EXPLAINS 7Li Discrepancy in BBN and Dark Matter to baryon ratio
- Usual WIMP detection strategy isn't applicable.
- May reconcile tension in H₀ & σ_8 and explain astrophysics puzzles ("quenching", core-cusp, DM rotation curves...)
- S may be waiting to be discovered in existing Υ-decays or LHC experiments... mass can be accurately measured in Υ-decay exclusive final states.
- SDM will be challenging to detect, but not impossible. Astrophysical and cosmological effects may allow it to be constrained, excluded or confirmed.

Backup Slides

Classic Approach: would be great, but very low rate due to low overlap

$$\begin{array}{ccc} & K^{-} & p & -> \overline{\Lambda} & S \\ & & +1 & & -\frac{1}{5} & +2 \\ S & & & S & & S \end{array}$$

- $\overline{\Lambda}$ is a gold-plated signature : $\overline{\Lambda} \rightarrow \pi^+ \overline{p}$
 - Easy to ID & reconstruct 4-momentum
 - $c\tau = 8 \text{ cm}$ all $\overline{\Lambda}$ are ID'd
- S: undetected, but 4 momentum determined
 - $p_S = p_K + p_p p_{\overline{\Lambda}}$
 - NA61: est.~ 20 MeV accuracy on "missing-mass" of S
 - For $p_{\text{beam}} < 5.35$ GeV/c , no conventional source of $\overline{\Lambda}$'s
- NA61: 9 GeV/c K-beam


Sexaquark Discovery Strategy

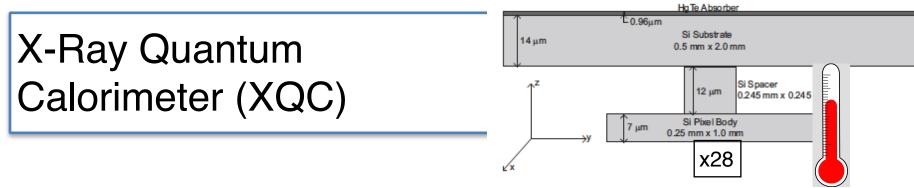
- Apparent lack of B and S conservation:
 - $\cdot \Delta B = \pm 2 + \Delta S = \mp 2$

- Reconstruct missing mass, e.g.:
 - $\Upsilon \rightarrow \Lambda \overline{\Lambda} \overline{S}$ (+ pions) $M_S^2 = (p_Y p_{\Lambda 1} p_{\Lambda 2} \sum p_{\pi_i})^2$
 - LHC: $\overline{S} + N \rightarrow \overline{\Lambda} K^+ M_S^2 = (p_{\overline{\Lambda}} + p_K p_N)^2$
- Snolab nuclei: pn -> S e⁺ ν G_F⁴ τ > 10⁺²⁹ yr

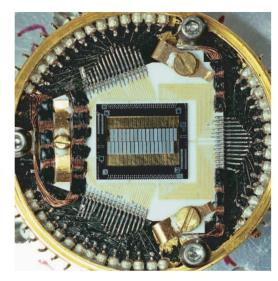
$\Upsilon \rightarrow \bigwedge \bigwedge \overline{S} \otimes \overline{X} \otimes \overline{X} \otimes \overline{X}$

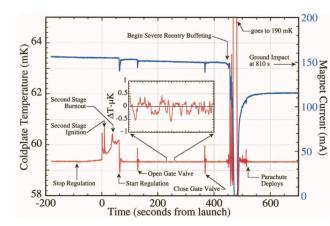
- · Υ is *localized* source of ggg
 - \Rightarrow production of S is (relatively) enhanced
- Many x 10⁸ events collected (CLEO, Babar, Belle)
 - detectors pretty hermetic, have good mass resolution, O(10 MeV)
 - Λ decays quickly to $p\pi$ so easy to ID. $c\tau = 8 \text{ cm}$
- Can MEASURE ms via missing mass
- Very clean
 - Main bkg is $K_S K_S K_L K_L$ (+ pions)
 - K_S 's mis-ID'd as A's and K_L 's escaping before decay : negligible for Belle
 - rare and can model accurately
 - $K_S K_S K_L K_L$ (+ pions) *is measurable*, from K+ K+ K⁻ K⁻ (+ pions)
 - "Conspiracy" of missed particles producing $\Delta B = \pm 2$, $\Delta S = \mp 2$ very hard **Background does not have narrow peak in missing mass!**

LHC


- Hadronic collisions: low production rate due to small wfn overlap
- Find a needle in a haystack (10¹¹ recorded events; potential for trigger >>> more
- Statistical examination of correlation between

 $\Delta B = \pm 2, \Delta S = \mp 2$


• \bar{S} annihilation in tracker, tag by $\bar{\Xi}^{+,o} \rightarrow \bar{\Lambda} \pi^{+,o}$ (c $\tau = 5\gamma$ cm) $\bar{\Lambda} \rightarrow \bar{p} \pi^{+}$ or $\bar{\Lambda}$ K+


 $\overline{S} + \mathbf{p} \longrightarrow \overline{A} \xrightarrow{K^{+}} \underbrace{P_{\mathbf{x}}(\overline{S}) \sim 1 \text{ GeV}}_{\mathbf{x}^{2}} = P_{\mathbf{x}}^{2} = (P_{\mathbf{x}^{+}} + P_{\overline{A}} - P_{\mathbf{x}})^{2}$

• 2nd exponential in scattering-length distribution of n-like interactions, due to S

- On sounding rocket, 200 km above earth
- Best limit for high x-secn (McCammon+02, Wandelt+02, GF+Zaharijas05, Erickcek+07, Mahdawi & GF 17) 10-2 $\sigma_p (cm^2)$
 - sensitive to X-rays with $E \ge 29 \text{ eV}$
 - 100 sec flight, ~ 100 events ٠
 - nuclear recoil => X-rays, which thermalize (assumption)

Calibrate with X-rays

DAMI

 10^{0}

m (GeV)

 10^{1}

BBS

CRES

10-

10-

 10^{-3}

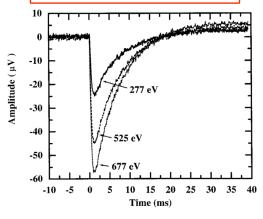


FIG. 7.--In-flight performance of the temperature control system, showing the coldplate temperature and magnet current. Temperature fluctuations during data taking are about 210 nK rms. The gate-valve motor is located on the vacuum jacket and caused the most serious thermal disturbance up to reentry Accelerations during reentry exceeded 20 g with tumbling at ~1 Hz, introducing heat to the cold stage faster than it could be removed. Temperature regulation is recovered once tumbling stops, allowing calibration data to be obtained

FIG. 8.—Unfiltered X-ray pulses from the gate-valve calibration source

Closer look at XQC sensitivity

Silicon nucleus recoil: $KE_{max} \sim 500 \text{ eV} \implies v_{max} \sim 20 \text{ km/s} \ll v_e \implies$

- atomic interaction is adiabatic =>
- negligible ionization.

Si atom moving in semiconductor crystal:

- rearranges covalent bonds
- produces interstitial defects
- 500eV atom produces Frenkel pairs (V+I)
 - $E_{Fp_min} = 5 \text{ eV}$
 - $E_{migration} \sim 0.1 \text{ eV}$
- Cascade energy loss producing
 - N ~ (KE_{rec} / 5 eV) Frenkel pairs,

<~2% of KE_{rec} goes to thermalization

```
=> KE<sub>rec,min</sub> > 1.5 keV => KE<sub>DM,min</sub> > 6 keV =>
V<sub>DM,min</sub> > 300 km/s
```

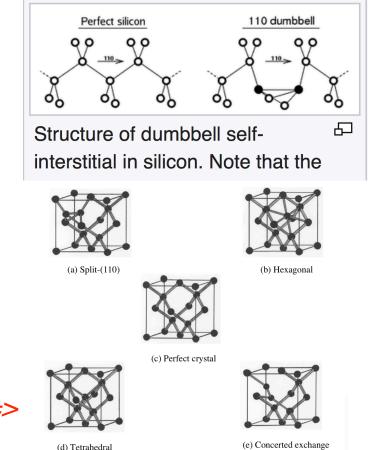


Figure 1. Illustrations of the split-(110), hexagonal, and tetrahedral self-interstitial defects, together with the perfect crystal and the saddle point of Pandey's concerted exchange. 26