Collective neutrino oscillations and nucleosynthesis

A.B. Balantekin, University of Wisconsin CIPANP 2018, June 1, 2018

$$\left| \boldsymbol{\nu}_{flavor} \right\rangle = T \left| \boldsymbol{\nu}_{mass} \right\rangle$$

$$T = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

atmospheric neutrinos reactor neutrinos solar neutrinos $c_{ij} = \cos\theta_{ij} \quad s_{ij} = \sin\theta_{ij}$

$$P(v_e \rightarrow v_e) = 1 - \sin^2 2\theta_{13} \left[\cos^2 \theta_{12} \sin^2 \left(\Delta_{31} L \right) + \sin^2 \theta_{12} \sin^2 \left(\Delta_{32} L \right) \right]$$
$$- \cos^4 \theta_{13} \sin^2 2\theta_{12} \sin^2 \left(\Delta_{21} L \right)$$
$$\Delta_{ij} = \frac{\delta m_{ij}^2}{4E_v} = \frac{m_i^2 - m_j^2}{4E_v}, \quad \Delta_{32} = \Delta_{31} - \Delta_{21}$$

Neutrinos in matter: the MSW Effect

n vacuum:
$$E^2 = \mathbf{p}^2 + m^2$$

In matter: $(E - V)^2 = (\mathbf{p} - \mathbf{A})^2 + m^2$ $\Rightarrow E^2 = \mathbf{p}^2 + m_{\text{eff}}^2$ $V \propto$ background density $\mathbf{A} \propto \mathbf{J}_{\mathrm{background}}$ (currents) or $\mathbf{A} \propto \mathbf{S}_{\mathrm{background}}$ (spin) In the limit of static, charge-neutral, and unpolarized background $V \propto N_e$ and $\mathbf{A} = 0$ $\Rightarrow m_{\text{eff}}^2 = m^2 + 2EV + \mathcal{O}(V^2)$ The potential is provided by the coherent forward scattering of v_e 's off the electrons in dense matter

There is a similar term with Z-exchange. But since it is the same for all neutrino flavors at the tree level, it does not contribute to phase differences unless we invoke sterile neutrinos.

Note the fine print!

Matter effects

$$\begin{split} i \frac{\partial}{\partial t} \begin{pmatrix} \psi_{e} \\ \psi_{\mu} \\ \psi_{\tau} \end{pmatrix} &= \begin{bmatrix} T \begin{pmatrix} E_{1} & 0 & 0 \\ 0 & E_{2} & 0 \\ 0 & 0 & E_{3} \end{bmatrix} T^{\dagger} + \begin{pmatrix} V_{c} + V_{n} & 0 & 0 \\ 0 & V_{n} & 0 \\ 0 & 0 & V_{n} \end{bmatrix} \begin{bmatrix} \psi_{e} \\ \psi_{\mu} \\ \psi_{\tau} \end{pmatrix} \\ V_{c} &= \sqrt{2} G_{F} N_{e} \end{split}$$

Two-flavor limit

$$H = \sum \left[\left(-\frac{\delta m^2}{4E_{\nu}} \cos 2\theta + \frac{1}{\sqrt{2}} G_F N_e \right) \left(a_e^{\dagger} a_e - a_{\mu}^{\dagger} a_{\mu} \right) + \frac{\delta m^2}{4E_{\nu}} \sin 2\theta \left(a_e^{\dagger} a_{\mu} + a_{\mu}^{\dagger} a_e \right) \right]$$

Neutrinos from core-collapse supernovae

 $\begin{array}{ccc} \bullet M_{\rm prog} \geq & 8 & M_{\rm sun} \Rightarrow \Delta E \approx 10^{53} \ {\rm ergs} \approx \\ & 10^{59} \ {\rm MeV} \end{array} \end{array}$

•99% of the energy is carried away by neutrinos and antineutrinos with $10 \le E_v \le 30 \text{ MeV} \implies 10^{58} \text{ neutrinos}.$

•We cannot ignore the interactions between these neutrinos!

The second term makes the physics of a neutrino gas in a core-collapse supernova a very interesting many-body problem, driven by weak interactions.

Neutrino-neutrino interactions lead to novel collective and emergent effects, such as conserved quantities and interesting features in the neutrino energy spectra (spectral "swaps" or "splits").

Many neutrino system

This is the only many-body system driven by the weak interactions:

Table: Many-body systems

Nuclei	Strong	at most ${\sim}250$ particles
Condensed matter	E&M	at most N_A particles
ν 's in SN	Weak	$\sim 10^{58}$ particles

Astrophysical extremes allow us to test physics that cannot be tested elsewhere!

r-process nucleosynthesis

The origin of elements

Neutrinos not only play a crucial role in the dynamics of these sites, but they also control the value of the electron fraction, the parameter determining the yields of the rprocess.

Possible sites for the r-process

Symmetry magazine

If we want to catch a supernova with neutrinos we'd better know what neutrinos do inside a supernova. Understanding a core-collapse supernova and the nucleosynthesis it may host requires answers to a variety of questions!

Balantekin and Fuller, Prog. Part. Nucl. Phys. **71** 162 (2013)

$$\hat{J}_{+} = a_{e}^{\dagger}a_{\mu} \qquad \hat{J}_{-} = a_{\mu}^{\dagger}a_{e}$$
$$\hat{J}_{0} = \frac{1}{2} \left(a_{e}^{\dagger}a_{e} - a_{\mu}^{\dagger}a_{\mu} \right)$$

These operators can be written in either mass or flavor basis

$$\hat{H}_{vv} = \frac{\sqrt{2}G_F}{V} \int dp \, dq \left(1 - \cos\theta_{pq}\right) \vec{\mathbf{J}}_p \cdot \vec{\mathbf{J}}_q$$

$$\hat{H} = \int dp \left(\frac{\delta m^2}{2E} \vec{\mathbf{B}} \cdot \vec{\mathbf{J}}_p - \sqrt{2} G_F N_e \mathbf{J}_p^0 \right) + \frac{\sqrt{2} G_F}{V} \int dp \, dq \left(1 - \cos \theta_{pq} \right) \vec{\mathbf{J}}_p \cdot \vec{\mathbf{J}}_q$$
$$\vec{\mathbf{B}} = \left(\sin 2\theta, \ 0, -\cos 2\theta \right)$$

The duality between $H_{\nu\nu}$ and BCS Hamiltonians

Same symmetries leading to Analogous (dual) dynamics! Pehlivan, Balantekin, Kajino, and Yoshida, Phys.Rev. D **84**, 065008 (2011)

This symmetry naturally leads to splits in the neutrino energy spectra and was used to find conserved quantities in the single-angle case.

Neutrino Hamiltonian with $\nu - \nu$ interactions

$$\hat{H}_{\text{total}} = \sum_{p} \frac{\delta m^2}{2p} \hat{B} \cdot \vec{J_p} + \frac{\sqrt{2}G_F}{V} \sum_{\mathbf{p},\mathbf{q}} (1 - \cos\vartheta_{\mathbf{pq}}) \vec{J_p} \cdot \vec{J_q}$$

Single-angle approximation \Rightarrow

$$\hat{H}_{\text{total}} = \sum_{p} \frac{\delta m^2}{2p} \hat{B} \cdot \vec{J_p} + \frac{\sqrt{2}G_F}{V} \langle (1 - \cos \vartheta_{pq}) \rangle \sum_{p \neq q} \vec{J_p} \cdot \vec{J_q}$$

Defining $\mu = \frac{\sqrt{2}G_F}{V} \langle (1 - \cos \vartheta_{pq}) \rangle$, and $\omega_p = \frac{\delta m^2}{2p}$ one can write

$$\hat{H}_{\text{total}} = \sum_{p} \omega_{p} \hat{B} \cdot \vec{J}_{p} + \mu \sum_{\mathbf{p} \neq \mathbf{q}} \vec{J}_{\mathbf{p}} \cdot \vec{J}_{\mathbf{q}}$$

Single-angle approximation Hamiltonian:

$$H = \sum_{p} \frac{\delta m^2}{2p} J_p^0 + 2\mu \sum_{\substack{p, q \ p \neq q}} \mathbf{J}_p \bullet \mathbf{J}_q$$

Eigenstates:

$$|x_i\rangle = \prod_{i=1}^N \sum_k \frac{J_k^{\dagger}}{\left(\delta m^2/2k\right) - x_i} |0\rangle$$
$$-\frac{1}{2\mu} - \sum_k \frac{j_k}{\left(\delta m^2/2k\right) - x_i} = \sum_{j \neq i} \frac{1}{x_i - x_j}$$

Bethe ansatz equations

$$\mu = \frac{G_F}{\sqrt{2}V} \left\langle 1 - \cos\Theta \right\rangle$$

Pehlivan, ABB, Kajino, & Yoshida Phys. Rev. D 84, 065008 (2011)

What is the mean-field approximation?

 $\begin{bmatrix} \hat{O}_1, \hat{O}_2 \end{bmatrix} \cong 0$ $\hat{O}_1 \hat{O}_2 \approx \hat{O}_1 \left\langle \hat{O}_2 \right\rangle + \left\langle \hat{O}_1 \right\rangle \hat{O}_2 - \left\langle \hat{O}_1 \hat{O}_2 \right\rangle$ Expectation values should be calculated with a state $|\Psi\rangle$ chosen to satisfy: $\left\langle \hat{O}_1 \hat{O}_2 \right\rangle = \left\langle \hat{O}_1 \right\rangle \left\langle \hat{O}_2 \right\rangle$

This reduces the two-body problem to a one-body problem: $a^{\dagger}a^{\dagger}aa \Rightarrow \langle a^{\dagger}a \rangle a^{\dagger}a + \langle a^{\dagger}a^{\dagger} \rangle aa + h.c.$

$$\hat{H}_{vv} = \frac{\sqrt{2}G_F}{V} \int dp \, dq \left(1 - \cos\theta_{pq}\right) \vec{\mathbf{J}}_p \cdot \vec{\mathbf{J}}_q \cong \frac{\sqrt{2}G_F}{V} \int dp \, dq \left(1 - \cos\theta_{pq}\right) \left\langle \vec{\mathbf{J}}_p \right\rangle \cdot \vec{\mathbf{J}}_q$$

Mean field

Neutrino-neutrino interaction

$$\overline{\psi}_{\nu L}\gamma^{\mu}\psi_{\nu L}\overline{\psi}_{\nu L}\gamma_{\mu}\psi_{\nu L} \Rightarrow \overline{\psi}_{\nu L}\gamma^{\mu}\psi_{\nu L}\left\langle\overline{\psi}_{\nu L}\gamma_{\mu}\psi_{\nu L}\right\rangle + \cdots$$

Antineutrino-antineutrino interaction

$$\overline{\psi}_{\overline{\nu}R}\gamma^{\mu}\psi_{\overline{\nu}R}\overline{\psi}_{\overline{\nu}R}\gamma_{\mu}\psi_{\overline{\nu}R} \Rightarrow \overline{\psi}_{\overline{\nu}R}\gamma^{\mu}\psi_{\overline{\nu}R}\left\langle\overline{\psi}_{\overline{\nu}R}\gamma_{\mu}\psi_{\overline{\nu}R}\right\rangle + \cdots$$

Neutrino-antineutrino interaction

$$\bar{\psi}_{\nu L}\gamma^{\mu}\psi_{\nu L}\bar{\psi}_{\bar{\nu}R}\gamma_{\mu}\psi_{\bar{\nu}R} \Rightarrow \bar{\psi}_{\nu L}\gamma^{\mu}\psi_{\nu L}\left\langle\bar{\psi}_{\bar{\nu}R}\gamma_{\mu}\psi_{\bar{\nu}R}\right\rangle + \cdots$$

Balantekin and Pehlivan, JPG 34,1783 (2007)

Neutrino-antineutrino can also have an additional mean field

$$\begin{split} & \overline{\psi}_{\nu L} \gamma^{\mu} \psi_{\nu L} \overline{\psi}_{\overline{\nu} R} \gamma_{\mu} \psi_{\overline{\nu} R} \Rightarrow \overline{\psi}_{\nu L} \gamma^{\mu} \left\langle \psi_{\nu L} \overline{\psi}_{\overline{\nu} R} \gamma_{\mu} \right\rangle \psi_{\overline{\nu} R} + \cdots \\ & \text{However note that} \\ & \left\langle \psi_{\nu L} \overline{\psi}_{\overline{\nu} R} \gamma_{\mu} \right\rangle \propto m_{\nu} \quad \text{(negligible if the medium is isotropic)} \end{split}$$

Fuller *et al.* Volpe Single-angle approximation Hamiltonian:

$$H = \sum_{p} \frac{\delta m^2}{2p} J_p^0 + 2\mu \sum_{\substack{p, q \ p \neq q}} \mathbf{J}_p \bullet \mathbf{J}_q$$

Eigenstates:

$$|x_i\rangle = \prod_{i=1}^N \sum_k \frac{J_k^{\dagger}}{\left(\delta m^2/2k\right) - x_i} |0\rangle$$
$$-\frac{1}{2\mu} - \sum_k \frac{j_k}{\left(\delta m^2/2k\right) - x_i} = \sum_{j \neq i} \frac{1}{x_i - x_j}$$

Bethe ansatz equations

$$\mu = \frac{G_F}{\sqrt{2}V} \left\langle 1 - \cos\Theta \right\rangle$$

Pehlivan, ABB, Kajino, & Yoshida Phys. Rev. D 84, 065008 (2011)

Away from the mean-field: First adiabatic solution of the *exact* many-body Hamiltonian

- Solutions of the Bethe ansatz equations for 250 neutrinos. Same behavior as the mean-field.
- Two flavors only
- Inverted hierarchy, no matter effect

2015

Adiabatic evolution of an initial thermal distribution (T = 10 MeV) of electron neutrinos. 10⁸ neutrinos distributed over 1200 energy bins with solar neutrino parameters and normal hierarchy.

Birol, Pehlivan, Balantekin, Kajino arXiv:1805.11767

Adiabatic evolution of an initial thermal distribution of electron neutrinos (T=10 MeV) and antineutrinos of another flavor (T=12MeV). 10⁸ neutrinos distributed over 1200 energy bins both for neutrinos and antineutrinos with solar neutrino parameters and normal hierarchy.

Birol, Pehlivan, Balantekin, Kajino arXiv:1805.11767 An alternative approach Patwardhan, Cervia, Balantekin 2018

$$-\frac{1}{2\mu} - \sum_{p}^{M} \frac{j_{p}}{\omega_{p} - \lambda_{i}} = \sum_{j \neq i}^{N} \frac{1}{\lambda_{i} - \lambda_{j}}$$

$$P(\lambda) = \prod_{i} (\lambda - x_{i}) = \exp\left(\sum_{i} \log(\lambda - x_{i})\right)$$

$$\Lambda(\lambda) = \frac{dP/d\lambda}{P(\lambda)} = \sum_{i=1}^{N} \frac{1}{\lambda - x_{i}}$$

$$\Lambda^{2}(\lambda) + \Lambda'(\lambda) + \frac{1}{\mu}\Lambda(\lambda) = 2\sum_{p} \frac{j_{p}}{\lambda - \omega_{p}} \left[\Lambda(\lambda) - \Lambda(\omega_{p})\right]$$

Key idea: Calculate Λ at $\lambda{=}\omega_{\mathsf{p}}$

$$\Lambda^{2}(\omega_{q}) + (1 - 2j_{q})\Lambda'(\omega_{q}) + \frac{1}{\mu}\Lambda(\omega_{q}) = 2\sum_{p\neq q} j_{p} \frac{\Lambda(\omega_{q}) - \Lambda(\omega_{p})}{\omega_{q} - \omega_{p}}.$$

Note that for $j_q = 1/2$ the derivative term vanishes and one gets an algebraic equation!

$$2\Lambda(\omega_q)\Lambda'(\omega_q) + (1-j_q)\Lambda''(\omega_q) + \frac{\Lambda'(\omega_q)}{\mu}$$
$$= 2\sum_{p\neq q} j_p \left[\frac{\Lambda'(\omega_q)}{\omega_q - \omega_p} + \frac{\Lambda(\omega_q) - \Lambda(\omega_p)}{(\omega_q - \omega_p)^2} \right]$$

The second derivative vanishes for $j_q = 1$. For higher j_q values keep taking derivatives.

How can we make further progress?

- We examined the many-neutrino gas both from the exact many-body perspective and an effective one-body description following introduction of a mean field. In the limit of the single angle approximation, both pictures possess constants of motion.
- At least in the single angle approximation, we can solve the full many-body problem in the adiabatic limit for a few simple cases. To go beyond those special cases we need to solve the Bethe ansatz equations.

Thank you very much!