CIPANP2018 Palm Spring 29 May 2018

RD and RD* Theoretical Developments

Ryoutaro Watanabe

Groupe de Physique des Particules, Université de Montréal

are tree level processes

Precise prediction on the Ratio has been done

$$egin{aligned} R_D &= rac{\Gamma(ar{B} o D auar{
u})}{\Gamma(ar{B} o D\ellar{
u})} = 0.299 \pm 0.003 \ &\sim 1\% \ R_{D^*} &= rac{\Gamma(ar{B} o D^* auar{
u})}{\Gamma(ar{B} o D^*\ellar{
u})} = 0.257 \pm 0.003 \end{aligned}$$

Nevertheless,

• the SM values are NOT in agreement with data

 $\sim 4.1 \sigma$

BaBar : PRL 109, 101802 (2012), PRD 88, 072012 (2013) Belle : PRD 92, 072014 (2015), PRD 94, 072007 (2016), arXiv 1608.06391 LHCb : PRL 115, 111803 (2015), arXiv 1708.08856

Topics

- SM predictions
- NP explanations
- Relevant observables

SM predictions

[1] Form Factor

Main uncertainty in RD(*) comes from Form Factors

$$\langle D(v')|ar{c}\gamma_{\mu}b|B(v)
angle = \sqrt{m_{B}m_{D}} \Big[h_{+}(q^{2})(v+v')_{\mu} + h_{-}(q^{2})(v-v')_{\mu} \Big]$$

$$rac{d\Gamma(B o D\ell
u)}{dw} = rac{G_F^2 |V_{cb}|^2 \, \eta^2 \, m_B^5}{48\pi^3} \, (w(q^2)^2 - 1)^{3/2} \, r_D^3 \, (1+r_D)^2 \, \mathcal{G}(q^2)^2$$

Using Heavy Quark Effective Theory, q^2 dependence can be described

$$\mathcal{G} = h_{+} - \frac{1 - r_{D}}{1 + r_{D}}h_{-} = \xi_{IW}(q^{2}) + \frac{\alpha_{s}}{\pi}\chi_{1}(q^{2}) + \frac{\Lambda_{\text{QCD}}}{m_{c,b}}\chi_{2}(q^{2}) + \cdots$$

The functions are then determined with QCD sum-rule / lattice + fit to data of the light lepton mode.

QCDSR + lattice QCD + Fit to Belle data of $B \to D(*)\ell\nu$ $(\ell = e, \mu)$ up to the NLO, i.e. $O(\alpha_s), O(1/m_Q)$

Ligeti et al., 1703.05330

Scenario	R(D)	$R(D^*)$	Correlation	
$L_{w=1}$	0.292 ± 0.005	0.255 ± 0.005	41%	
$L_{w=1} + SR$	0.291 ± 0.005	0.255 ± 0.003	57%	
NoL	0.273 ± 0.016	0.250 ± 0.006	49%	
NoL+SR	0.295 ± 0.007	0.255 ± 0.004	43%	This study
$L_{w \ge 1}$	0.298 ± 0.003	0.261 ± 0.004	19%	
$L_{w \ge 1} + SR$	0.299 ± 0.003	0.257 ± 0.003	44 %	
th: $L_{w \ge 1} + SR$	0.306 ± 0.005	0.256 ± 0.004	33%	
Data [9]	0.403 ± 0.047	0.310 ± 0.017	-23%	Measurements
Refs. [53, 57, 59]	0.300 ± 0.008		—	
Ref. [58]	0.299 ± 0.003	—		Previous
Ref. [34]	_	0.252 ± 0.003	— —	stuales

[2] Radiative correction Kitahara et al., 1803.05881

Another development. Soft-photon effects depend on lepton mass, which leads to corrections even in RD(*)

Soft-photon corrections to RD result in

- (1) leading to $RD^+ \neq RD^0$
- (2) depending on photon energy cut
- (3) non-negligible constructive contribution to RD,

at most 4~6%

Kitahara et al., 1803.05881

FIG. 3. The (leading) long-distance QED corrections to $R(D^+)^{\tau/\mu}$ and $R(D^0)^{\tau/\mu}$ as a function of E_{max} .

NP explanations

There exist several solutions to the RD(*) anomaly.

In terms of effective operators, possible NPs are given as follows

$$\mathcal{L}_{ ext{eff}}^{ ext{NP}} \equiv -2\sqrt{2}G_F V_{cb} \, oldsymbol{\mathcal{C}_{ ext{NP}}} oldsymbol{\mathcal{O}_{ ext{NP}}}$$

V-A: $\mathcal{O}_{V_1} = (\bar{c}\gamma^{\mu}P_Lb)(\bar{\tau}\gamma_{\mu}P_L\nu)$

Models: (SM), W' boson, Vector Leptoquark, ...

Fit to data : $C_{V_1} \sim +0.17$

- NP with 17% contribution of the SM value is required
- Assuming NP coupling =1, it implies \sim 2TeV NP scale

V+A (quark sector) : ${\cal O}_{V_2}=(ar c\gamma^\mu P_Rb)(ar \tau\gamma_\mu P_L
u)$

Models : W' boson, ...?

Fit to data: $C_{V_2} \sim 0.01 + 0.6i$

Complex coupling is necessary

Scalar types :
$$\mathcal{O}_{S_{1(2)}} = (\bar{c} P_{R(L)} b) (\bar{\tau} P_L \nu)$$
Models :Charged Higgs, Scalar Leptoquark, ...

Fit to data: C_{S_1} = no solution, $C_{S_2} \sim -1.5$

- 2HDM of typell is disfavored
- Large scalar contribution is needed

Relevant observables

[1] q² distribution RW et al. 1412.3761, B2TiP report

Distributions for the case that C_{NP} = best fit to the current results of $R_{D^{(*)}}$

Some simple test with statistics was done and it turns out that

"5ab^-1 data for q^2 distributions enable us to distinguish the NP scenarios in case that the present anomalies still remain in the future"

 $[2] \quad B_c \to J/\psi \, \tau \nu$

RW, 1709.08644

data: $R_{J/\psi} = 0.71 \pm 0.17 \pm 0.18$ LHCb, 1711.05623

SM: $R_{J/\psi} = 0.283 \pm 0.048$ RW, 1709.08644

- Perturbative QCD analysis provides the form factor.
- Still large errors both in data (35%) and SM (17%)
- Deviation ~1.7σ
- **NP:** Central value of the data cannot be reproduced

$[3] \quad B_c \to \tau \nu$

Grinstein et al, 1611.06676 Akeroyd, 1708.04072

Not directly measured, but some limits have been estimated from Bc decay

From Bc life time : uncertainty of theoretical evaluation implies From LEP data : extracted from data at the Z boson peak

- \cdot Indirect bound is then given as ${\cal B}(B_c o au
 u) < 10 30\%$
- This kills the Scalar NP explanation

FIG. 2. (a) The long-distance QED corrections to the branching ratios of $\overline{B}^0 \to D^+ \ell^- \overline{\nu}_\ell$ and (b) $B^- \to D^0 \ell^- \overline{\nu}_\ell$, where $\ell = \mu, \tau$, as a function of E_{max} . The dotted lines show the corrections to $\overline{B}^0 \to D^+ \ell^- \overline{\nu}_\ell$ without the Coulomb contributions, for the purpose of illustration.