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2νββ-decay: SM allowed and observed.
0νββ-decay: Violates lepton number conservation (a requirement of some
neutrino mass models). Not yet observed.
For 76Ge (Q = 2039 keV):

I T2ν
1/2 ∼ 1021 y → Rare process.

I T0ν
1/2 > 1026 y → Need ultra-low background, large mass, long counting

time to search for it.
F e.g. T0ν

1/2 ∼ 1028 y would give signal of ∼ 0.5 counts/ton·year.
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A tale of two experiments

Majorana Demonstrator (SURF)

Detectors (29.7 kg enr76Ge) in 2
vacuum cryostats.

Surrounded by passive shield.

Ultra-clean materials used.

GERDA (LNGS)

water tank
(Ø 10m, 590m  )3

roof of clean room

lock

Ge detector array &
LAr veto system

cryostat
(Ø 4m, 64m  )3

PMT of muon veto

floor of clean room

plastic muon veto

glove box

Detectors (37.6 kg enr76Ge) in
liquid argon (LAr).

LAr acts as an active shield
I Tag backgrounds with

scintillation light.

Both have achieved backgrounds of: ∼ 3 counts/(FWHM · t · y)
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Discovery potential vs. exposure
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Ge (88% enr.)76

Need a tonne-scale detector with backgrounds <∼ 0.1 c/FWHM·t·y for
3σ discovery at bottom of IO-allowed region on a reasonable time scale.

Colored band shows expected half-life range for mββ = 17 meV, with unquenched axial vector coupling, and nuclear matrix elements
ranging from 3.5 to 5.5.
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Status of the field

This plot effectively assumes an ROI for each experiment ∆EFWHM wide.
76Ge detector arrays have demonstrated the lowest backgrounds and
highest energy resolution of all 0νββ experiment technologies.
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Next Generation 76Ge: LEGEND
Large Enriched Germanium Experiment for Neutrinoless ββ Decay

Mission: “The collaboration aims to develop a phased, Ge-76 based
double-beta decay experimental program with discovery potential at a half-life
beyond 1028 years, using existing resources as appropriate to expedite physics
results.”

Select best technologies, based on what has been learned from GERDA and
the Majorana Demonstrator, as well as contributions from other groups
and experiments.
First phase:

(Up to) 200 kg.
Modification of
existing GERDA
infrastructure at
LNGS.
BG goal (×5 lower)
0.6 c/(FWHM·t·y)
Start by 2021.

Subsequent stages:
1000 kg (staged).
Timeline connected to
U.S. DOE down select
process.
BG goal (×30 lower)
0.1 c/(FWHM·t·y)
Location: TBD.
Required depth (Ge-77m)
under investigation.
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LEGEND discovery potential

Reduction of backgrounds is crucial to achieve good discovery potential.
Majorana and GERDA technologies combined with new R&D to
accomplish this.
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LEGEND-200

Initial 200 kg phase permits early science
with a world-leading experiment.

Exposure 1 ton·yr, sensitivity > 1027 yr

Keeps young people involved and
maintains skilled workers.

Reduces risk for a future ton-scale phase.

Reuse of GERDA infrastructure and
Majorana/GERDA detectors (60 kg)
permits possible data taking in 2021-2022.

Room in GERDA cryostat for 200 kg of
enriched detectors.

water tank
(Ø 10m, 590m  )3

roof of clean room

lock

Ge detector array &
LAr veto system

cryostat
(Ø 4m, 64m  )3

PMT of muon veto

floor of clean room

plastic muon veto

glove box

Required reduction in background for LEGEND-200 has already
been demonstrated as feasible in the Majorana Demonstrator,
GERDA, and dedicated test stands.
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Background reduction
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Electroformed copper

Majorana Demonstrator copper electroformed underground at
PNNL and SURF.

I Th decay chain (avg): ≤ 0.1 µBq/kg
I U decay chain (avg): ≤ 0.1 µBq/kg

F At least an order of magnitude lower background than commercial OFHC
copper.

Machined and stored underground to reduce cosmogenic activation
(60Co).
Using Majorana electroforming practices should improve on GERDA
radiopurity for LEGEND-200.

I Facilities at SURF should be able to produce enough copper for
LEGEND-200 in the next 14 months.
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LEGEND-200: Liquid argon veto

GERDA employs PMTs above and
below the array and a surrounding
wavelength shifting fibre shroud to
read out LAr scintillation light.

Different geometries of fibres
between the detector strings being
studied to improve light collection
in LEGEND-200.

Can improve LAr purity to improve
light yield and attenuation.

Also investigating more radiopure
fibres and amplification or
digitization in LAr, but may be on
longer timeline.
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LEGEND-1000: Liquid argon veto

Natural Ar includes 42Ar.
I Decays to 42K ion, drifts to detectors, decays to

42Ca with Qβ = 3.5 MeV. (0νββ background).

Drift of 42K limited in GERDA and LEGEND-200
with nylon shrouds.

In GERDA, LAr veto tags coincident γ events well,
pure β-decays cut with ∼ 99% efficiency by PSA.

For LEGEND-1000, could remove this background
completely using depleted underground argon.

I Separate into four underground Ar volumes and
one large natural Ar volume.

I Copper dividing walls between to separate
instrumentation.

I Estimated underground Ar need: 21 tons, 15 m3.
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The Majorana Low-Mass Front-End (LMFE)

Most radiopure front-end in the world.

Lowest-noise front-end readout electronics in a
large Ge array.

LMFE in baseline design for LEGEND-200.
I Should result in reduced backgrounds and noise.
I R&D ongoing on LMFE performance in LAr and

with longer cables.

R&D for LEGEND-1000: ASIC pre-amp.
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Larger enrGe detectors

GERDA BEGes average 0.66 kg.

Majorana PPCs average 0.85 kg.

Both have:
I Excellent energy resolution.
I Superb pulse-shape sensitivity to reject multi-site

and surface background events.

Larger detectors require fewer cables and pre-amp
front-ends for the same total mass.

I Lower backgrounds.

New design: Inverted-Coaxial Point Contact
Detectors

I Allows detectors at least as large as normal coax,
with similar performance to BEGes and PPCs.

I 5 new enriched detectors in production, each
∼ 1.9 kg.

I Baseline 1.5-2.0 kg.
I Also studying natural detectors near 3 kg.
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Conclusions

The next generation of neutrinoless double-beta decay experiments
requires reduced backgrounds and additional mass.
76Ge detector arrays have demonstrated the lowest backgrounds and best
energy resolution of all the next generation experiment technologies.

The LEGEND collaboration plans to take the best of Majorana and
GERDA, and perform additional R&D to build a detector with
0νββ-decay discovery potential at a half-life beyond 1028 years.

LEGEND will proceed in a phased approach, started with the 200 kg
LEGEND-200.

I Factor of 5 background reduction goal is realistic and consistent with the
most conservative assay and simulation results.

R&D directed towards LEGEND-200 and LEGEND-1000 is ongoing.
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