b-jet tagging performance with ALICE at the LHC

Barbara Trzeciak (Utrecht University) on behalf of the ALICE Collaboration

Netherlands Organisation for Scientific Research CIPANP 2018 Palm Springs, CA May 29 - June 3 2018

Utrecht University

b-jets: Motivation

- pp collisions: sensitive probes of pQCD
- pA collisions: initial-state effects
- AA collisions: energy loss of hard-scattered partons via collisional and radiative processes
 - Flavour dependence of the jet quenching
 - Spatial redistribution of the lost energy

>b-jets: probes of the QGP transport properties

• Mass effects relevant $p_{T} < 70 \text{ GeV}/c$

→ Lower jet p_{T} reach with ALICE

b-jets with ALICE

b-jets with ALICE

- Charged constituents (ITS, TPC): "charged" jets
- + neutral constituents (EMCAL, DCAL): full jets
- Reconstruction using anti-k_T algorithm
 - b-tagging exploiting:
 - B-hadron long lifetime, cτ ~ 500 μm
 Displaced from primary vertex
 - Its large mass
 - Studied b-tagging algorithms:
 - Secondary vertex: using displaced vertices
 - Track counting: based on single tracks
 - Via heavy-flavour electron identification (charm+beauty)

I. Secondary Vertex algorithm

- Exploiting long lifetime and large vertex mass
- TPC and ITS used for tracking and secondary vertex reconstruction
 - Track impact parameter d_0 resolution < 75 μ m for p_T > 1 GeV/c
 - Secondary vertex resolution ~120 μm
 - b-jet if B-hadron within given R
 - Otherwise c-jet if charm hadron within given R
 - Otherwise light-flavour jet

SV algorithm: Simulations

- p-Pb at $\sqrt{s_{NN}}$ = 5.02 TeV, Pythia 6 + Hijing
- FastJet anti- k_{T} , R = 0.4, $p_{T^{\text{track}}} > 150 \text{ MeV}/c$
- Discriminators:
 - Significance of signed secondary vertex flight distance $L_{\rm xy}/\sigma_{L_{\rm xy}}$:
 - $L_{xy} = |\vec{L'}| \operatorname{sign}(\vec{L'} \cdot \vec{p}_{jet})$
 - \vec{L}' vector between primary and secondary vertices
 - $\sigma_{\!\scriptscriptstyle L_{
 m xy}}$ uncertainty corresponding to $\!\scriptscriptstyle L_{
 m xy}$
 - SV dispersion (vertex quality measure):

 $\sigma_{vtx} = \sqrt{d_1^2 + d_2^2 + d_3^2}$

 $d_{
m _{1,2,3}}$ – distances of the tracks from secondary vertex

k h-jets in ALICE

vertex

of the most displayed secondary

B.Trzeciak, b-jets in ALICE

SV algorithm: Performance

- "Rectangular" cuts on the vertex properties
 - b-jet tagging efficiency and c-/udsg-jet misidentification
 - The higher b-jet efficiency, the higher the c-/udsg-jet mistagging efficiency
 - Find condition of high purity and reasonably high efficiency

CIPANP, 31 May 2018

B.Trzeciak, b-jets in ALICE

SV algorithm: Unfolding

- SVD (Singular Value Decomposition) [1] used for unfolding
- Background subtraction: background density calculated using CMS method [2], soft clusters found using FastJet $k_{\rm T}$ with R = 0.4background density: $\rho_{\rm CMS} = median\{\frac{p_{\rm T,i}}{A_{\rm i}}\} \cdot C$ C: correction factor for empty clusters
- Unfolding with combined detector and background fluctuations matrix
 - Background fluctuations using Random Cone method in MC: $\delta p_T = \sum_i p_{T,i} - \rho A_{cone}$
- Correction stability tests performed
 - E.g.: applying efficiency and purity corrections before and after the unfolding

H. Hoecker, V.Kartverlishvili, Nucl. Instrum. Meth. A372 (1996) 469
 CMS collaboration, JHEP 1208 (2012) 130

II. Track Counting algorithm

- Impact parameter d_0 in $r\phi$ for each track within a jet

 $\operatorname{sign}(d_0^{\operatorname{jet}}) = \operatorname{sign}(\vec{d}_0 \cdot \vec{p}_{\operatorname{T,jet}})$

→Discriminator:

third, second or first (N=3,2,1) most displaced sign(d_0^{jet})

I/Entrie

hia simulation pp √s=7 TeV

Track counting method (N=3)

 $|\eta^{jet}| < 0.5, p_{-}^{jet} > 10 \text{ GeV/c}$

Anti- k_{T} , R = 0.4

N=3

- b-iets

- c-iets

ALICE

PERFORMANCE

/Entries

10-2

B.Trzeciak, b-jets in ALICE

III. Machine-Learning based algorithm

- ML techniques applied to several low-level inputs: constituents, secondary vertices, track impact parameters
- General design: multibranched, multilayered neural network
- Different networks tested on different features
- → Features:
 - Array of secondary vertices:
 - (x,y,z) rel. to primary vertex
 - Transverse plane distance and uncertainty: L_{xy}, σ_{xy}
 - Vertex track dispersion σ_{vtx} , fit quality χ^2
 - Array of constituents:
 - η, φ, r (relative to jet axis)
 - Track impact parameters D, Z and j_T

ML method: Simulations

- p-Pb at $\sqrt{s_{NN}}$ = 5.02 TeV, Pythia 6 + Hijing
- FastJet anti- k_{T} , R = 0.4
- Underlying event corrected
- 200k training, 50k validation samples
 - Control parameters: accuracy and loss
 - Slow learning up to high epoch counts
 - Learning rate parameters lowered after 200 epoch
 - Not much to gain with longer training

ML method: Simulations

- p-Pb at $\sqrt{s_{NN}}$ = 5.02 TeV, Pythia 6 + Hijing
- FastJet anti- k_{T} , R = 0.4
- Underlying event corrected
- 200k training, 50k validation samples
 - Control parameters: accuracy and loss
 - Slow learning up to high epoch counts
 - Learning rate parameters lowered after 200 epoch
 - Not much to gain with longer training
 - AUC: Area Under ROC Curve, slow but constant learning up to 220 epoch
 - Clearly separated score distribution

ML method: Simulations

- p-Pb at $\sqrt{s_{NN}}$ = 5.02 TeV, Pythia 6 + Hijing
- FastJet anti- k_{T} , R = 0.4
- Underlying event corrected
- 200k training, 50k validation samples
 - Control parameters: accuracy and loss
 - Slow learning up to high epoch counts
 - Learning rate parameters lowered after 200 epoch
 - Not much to gain with longer training
 - AUC: Area Under ROC Curve, slow but constant learning up to 220 epoch
 - Clearly separated score distribution
- Comparison to "rectangular" cuts method
- Optimizing: b-jet tagging and c-/udsg-mistagging efficiency

ML: b-jet vs c,udsg mistagging efficiency

- Mistagging efficiency much lower for c-/udsgjets
- Very promising method

- Solid: ML-based method
- Dashed: cut-based method (previous SV slides)

ML: Mistagging efficiency vs jet p_{τ}

- Mistagging efficiency vs jet p_τ
- Fixed (~20%) b-jet efficiency to compare to cut-based method
- Solid: ML-based method
- Open: cut-based method (previous SV slides)

ML: Mistagging efficiency

- ALICE
- Mistagging efficiency for higher b-jet efficiencies
 - c-jet efficiency: below 5-10%
 - udsg-jet efficiency: below 0.5-1%
- Higher b-jet efficiency possible
- Solid: c-jets
- Open: udsg-jets

Summary

- Performances of different b-tagging jet algorithms have been studied in pp and p-Pb MC simulations
 - Based on track counting, displaced secondary vertices and machine learning
 - Very promising ML-based method in pp, p-Pb
 - Allows for much higher b-jet efficiency
- Data analysis (in pp and p-Pb) being finalized
- Studies will be extended to Pb-Pb collisions: upcoming Pb-Pb run and run 3 and 4
 - Major detector upgrade with new ITS (x3 (x5) better spatial resolution on rφ (z) coordinates), improved readout (able to sustain 50 kHz Pb-Pb collisions: collect L_{int}=10 nb⁻¹, x100 gain for min. bias)
 - Major boost for heavy-flavour jet physics with ALICE

Summary

- Performances of different b-tagging jet algorithms have been studied in pp and p-Pb MC simulations
 - Based on track counting, displaced secondary vertices and machine learning
 - Very promising ML-based method in pp, p-Pb
 - Allows for much higher b-jet efficiency
- Data analysis (in pp and p-Pb) being finalized
- Studies will be extended to Pb-Pb collisions: upcoming Pb-Pb run and run 3 and 4
 - Major detector upgrade with new ITS (x3 (x5) better spatial resolution on rφ (z) coordinates), improved readout (able to sustain 50 kHz Pb-Pb collisions: collect L_{int}=10 nb⁻¹, x100 gain for min. bias)
 - Major boost for heavy-flavour jet physics with ALICE

