

Measurements of Hadronic Cross Sections at **Hes**

May 30, 2018 | Christoph Florian Redmer for the BESIII Collaboration

CIPANP2018 – 13th Conference on the Intersections of Particle and Nuclear Physics

JG \cup Anomalous magnetic moment of the μ

Muon anomaly:
$$a_{\mu} = \frac{g_{\mu} - 2}{2}$$

a_{μ}	in units of 10^{-10}		
Standard Model	11659182.3 ± 4.3	Davier et al.	EPJC 77 (2017) 827
Direct Measurement	11659209.1 ± 6.3	BNL-E821	PRD 73 (2006) 072003
Difference	26.8 ± 7.6	More than three	standard deviations I

JG \cup Anomalous magnetic moment of the μ

Muon anomaly:
$$a_{\mu} = \frac{g_{\mu} - 2}{2}$$

a_{μ}	in units of 10 ⁻¹⁰		
Standard Model	11659182.3 ± 4.3	Davier et al.	EPJC 77 (2017) 827
Direct Measurement	11659209.1 ± 6.3	BNL-E821	PRD 73 (2006) 072003
Difference	26.8 ± 7.6	- More than three	e standard deviations !

Indication of New Physics?

New experiments at Fermilab and J-PARC aim at fourfold improvement of accuracy

$JG \cup Anomalous magnetic moment of the <math>\mu$

Muon anomaly:
$$a_{\mu} = \frac{g_{\mu} - 2}{2}$$

a_{μ}	in units of 10 ⁻¹⁰		
Standard Model	11659182.3 ± 4.3	Davier et al.	EPJC 77 (2017) 827
Direct Measurement	11659209.1 ± 6.3	BNL-E821	PRD 73 (2006) 072003
Difference	26.8 ± 7.6		
		 More than three 	e standard deviations !

Hadronic contributions completely dominate the uncertainty of the Standard Model prediction!

HVP (LO): $(693.1 \pm 3.4) 10^{-10}$ EPJC 77 (2017) 827 HLBL : $(10.5 \pm 2.6) 10^{-10}$ Adv. Ser. Direct. High Energy Phys. 20, 303 (2009)

Use input from experiments!

May 30, 2018

JG U Hadronic Vacuum Polarization

Related to hadronic cross sections by optical theorem

BESIII at BEPCII

NIM A614 (2010) 345

JGU

BESIII at BEPCII

- Operated at BEPCII collider
 - 2.0 ≤ √s [GeV] ≤ 4.6
 - Design luminosity achieved

$$\mathcal{L} = 1.0 \times 10^{33} \mathrm{cm}^{-2} \mathrm{s}^{-1}$$
 at $\psi(3770)$

- Data taking for
 - Charmonium spectroscopy
 - Charm physics
 - Light hadrons
 - τ and R-scan

Hadronic Cross Sections

- Exclusive Cross Sections
 - Direct scan

Inclusive Cross Sections

Direct scan

Initial State Radiation

R Measurement

- 130 energy scan points
- 2 GeV ≤ √s ≤ 4.6 GeV
- $N_{had} > 10^5$ at each point

 $\frac{1}{\sigma_{\mu\mu}} \cdot \frac{\mathsf{N}_{\mathsf{had}} - \mathsf{N}_{\mathsf{bkg}}}{\mathcal{L} \cdot \varepsilon_{\mathsf{had}} \cdot (1 + \delta)}$

- Background Contributions
 - Evaluated with MC
 - e⁺e⁻ : Babayaga
 - $\mu^+\mu^-$: Babayaga, Phokhara
 - *τ*⁺*τ*[−]: KKMC
 - $\gamma\gamma$: Babayaga
 - $\bullet \ e^+e^- \rightarrow e^+e^- + X$
 - Dominant channels according to Phys. Rep. 4 (1975) 81
 - BdkRC, Diag36, Galuga, Ekhara
 - Beam related background

Luminosity

R = -

- Determined from large angle Bhabha events
- 0.8 % uncertainty Chin.Phys. C41 (2017) 063001

- Radiative Corrections
 - Two schemes tested:
 - Feynman diagram
 - Structure functions
 - Agreement within 1.2%

R Measurement

Initial State Radiation

Reduces effective CMS energy

$$\sqrt{\mathsf{s}'} = \sqrt{\mathsf{s} - 2\sqrt{\mathsf{s}}\mathsf{E}_\gamma}$$

Radiator function relates to non-radiative process

 $\frac{\mathrm{d}\sigma_{\mathsf{had}+\gamma}}{\mathrm{d}\mathsf{m}_{\gamma}} = \frac{2\mathsf{m}_{\mathsf{had}}}{\mathsf{s}}\mathsf{W}(\mathsf{s},\mathsf{E}_{\gamma},\theta_{\gamma})_{\mathsf{had}}$

- Emission of ISR suppressed by $\frac{\alpha}{\pi}$
- Large integrated luminosity needed for precision studies
 - Studies based on 2.93 fb⁻¹ at $\psi(3770)$

CIPANP2018

ISR Measurements

polar angle distribution of ISR photons (MC)

Tagged analysis

- Detect hadronic system
- ISR photon detected
 - Acceptance from $\pi^+\pi^-$ threshold
 - Large background contamination at high $\sqrt{s'}$
- ISR photon undetected
 - High statistics
 - Acceptance for $\sqrt{s'} > 1$ GeV
 - Small background contamination

May 30, 2018

 $e^+e^- \rightarrow \pi^+\pi^-$

- $\mu \pi$ separation with Artificial Neural Network
- Normalized to integrated luminosity
- Careful evaluation of systematics
 - Total uncertainty of 0.9% achieved
 - Dominated by
 - Luminosity (0.5%)
 - Radiator function (0.5%)
- evaluation for $0.6 \le m_{\pi\pi} \le 0.9$ 70% of total 2π contribution
 50% of a_{μ}^{hVP} contribution

Comparison to previous measurements:

- Systematic shift in pion form factor
 - below ρ/ω interference wrt BaBar
 - above ρ/ω interference wrt KLOE

 $e^+e^- \rightarrow \pi^+\pi^-$

- $\mu \pi$ separation with Artificial Neural Network
- Normalized to integrated luminosity
- Careful evaluation of systematics
 - Total uncertainty of 0.9% achieved
 - Dominated by
 - Luminosity (0.5%)
 - Radiator function (0.5%)
- evaluation for $0.6 \le m_{\pi\pi} \le 0.9$ 70% of total 2π contribution
 50% of a_{μ}^{hVP} contribution

Comparison to previous measurements:

- Systematic shift in pion form factor
 - below ρ/ω interference wrt BaBar
 - above ρ/ω interference wrt KLOE

$e^+e^- \rightarrow \pi^+\pi^-$ KLOE combination: 366.9 ± 2.1 ⊢ BESIII (15): 368.2 ± 4.2 ⊢ ▲ BaBar (09): 376.7 ± 2.7 + * SND (04): 371.7 ± 5.0 ⊢ CMD-2 (03,06,06) combination: 372.4 ± 3.0 ⊢

385

390

395

400

Precision competitive to measurements by BaBar and KLOE

375

Good agreement with all KLOE results

365

360

BESIII result confirms $a_{\mu}^{theo,SM} - a_{\mu}^{exp} > 3\sigma$

370

Reevaluations of a_{μ}^{hVP} including BESIII result improve accuracy by 20%

380

 $a_{\mu}^{\ \pi^+\pi^-}$ (0.6 < \sqrt{s} ' < 0.9 GeV) x 10⁻¹⁰

EPJ C77 (2017), 820

Phys.Lett.B753 (2016) 629

JHEP 183 (2018) 173

Measure $e^+e^- \rightarrow \pi^+\pi^-\pi^0\pi^0(\gamma)$ to correct background description

JGU

 $e^+e^- \rightarrow \pi^+\pi^-\pi^0$

 $\pi^+\pi^-\pi^0$ invariant mass spectra

 $e^+e^- \rightarrow \pi^+\pi^-\pi^0$

- Good agreement with previous measurements
- Improved precision
 - ~ 3% syst. uncertainty in full mass range
 - < 2% at narrow resonances</p>
- Confirms BaBar result at ω''
- To be used to evaluate a_{μ}^{hVP}

$$e^+e^- \rightarrow \pi^+\pi^-\pi^0\pi^0$$

Strategy similar to $e^+e^- \rightarrow \pi^+\pi^-\pi^0\gamma$ analysis

- Error weighted mean of tagged and untagged results
- Good agreement with previous measurements
- Improved precision (approx. 3% syst. uncertainty)

May 30, 2018

$e^+e^- \rightarrow \pi^+\pi^-\pi^0\pi^0$

- Error weighted mean of tagged and untagged results
- Good agreement with previous measurements
- Improved precision (approx. 3% syst. uncertainty)

$$a_{\mu}^{\pi^{+}\pi^{-}2\pi^{0},\text{LO}} = \frac{1}{4\pi^{3}} \int_{(4m_{\pi})^{2}}^{(1.8\,\text{GeV})^{2}} ds \, K(s) \sigma_{\pi^{+}\pi^{-}2\pi^{0}}(s) \qquad \frac{a_{\mu}^{\pi^{+}\pi^{-}2\pi^{0},\text{LO}}/10^{-10}}{\text{BESIII (preliminary)}} \\ \frac{18.63 \pm 0.27 \pm 0.57}{17.9 \pm 0.1 \pm 0.6}$$

May 30, 2018

JGU

C.F. Redmer - Hadronic cross sections at BESIII

CIPANP2018

JGU

- $e^+e^- \rightarrow \omega \pi^0$
- Fit ω signal on smooth background in every bin of $M_{\pi^+\pi^-\pi^0\pi^0}$
- Approx. 4% syst. uncertainty
- Good agreement with previous measurements

 $e^+e^- \rightarrow \pi^+\pi^-\pi^0\pi^0\pi^0$

- From background evaluation of $e^+e^- \rightarrow \pi^+\pi^-\pi^0\pi^0$
- Good agreement calculations using isospin relations

May 30, 2018

JGU

- Hadronic cross section measurements at BESIII
 - Scan, tagged and untagged ISR methods
 - Competitive accuracy
 - $\pi^+\pi^-$ result confirms $a_{\mu}^{\text{theo},\text{SM}} a_{\mu}^{\text{exp}} > 3\sigma$
 - Preliminary results on $e^+e^- \rightarrow \pi^+\pi^-\pi^0$, $e^+e^- \rightarrow \pi^+\pi^-\pi^0\pi^0$ and $e^+e^- \rightarrow \pi^+\pi^-3\pi^0$

- Measurement of R value ongoing, 3% accuracy targeted
- Pion form factor to be evaluated in additional mass regions from ISR and scan data
- Additional exclusive final states in preparation