Current status of neutrinoless $\beta\beta$ decay nuclear matrix elements

Javier Menéndez

Center for Nuclear Study, The University of Tokyo

"Conference on the Intersections of Particle and Nuclear Physics" CIPANP 2018, Indian Wells, 31th May 2018

Graduate School of Science University of Tokyo

Center for Nuclear Study (CNS)

Neutrinoless $\beta\beta$ decay

Lepton-number violation, Majorana nature of neutrinos

Second order process only observable in rare cases with β -decay energetically forbidden or hindered by ΔJ

Nuclear matrix elements for fundamental physics

Neutrinos, dark matter studied in experiments using nuclei

Nuclear matrix elements depend on nuclear structure crucial to anticipate reach and fully exploit experiments

$$egin{aligned} &0
uetaeta\ ext{decay:} \left(T^{0
uetaeta}_{1/2}
ight)^{-1} \propto \left|M^{0
uetaeta}
ight|^2 m^2_{etaeta} \ Dark ext{ matter: } rac{ ext{d}\sigma_{\chi\mathcal{N}}}{ ext{d}oldsymbol{q}^2} \propto \left|\sum_i c_i\,\zeta_i\,\mathcal{F}_i
ight|^2 \end{aligned}$$

 $M^{0\nu\beta\beta}$: Nuclear matrix element \mathcal{F}_i : Nuclear structure factor

Next generation experiments: inverted hierarchy

The decay lifetime is $T_{1/2}^{0\nu\beta\beta} (0^+ \to 0^+)^{-1} = G_{01} |M^{0\nu\beta\beta}|^2 m_{\beta\beta}^2$ sensitive to absolute neutrino masses, $m_{\beta\beta} = |\sum U_{ek}^2 m_k|$, and hierarchy

Matrix elements needed to make sure KamLAND-Zen, PRL117 082503(2016) next generation ton-scale experiments fully explore "inverted hierarchy"

Calculating nuclear matrix elements

Nuclear matrix elements needed to study fundamental symmetries

$$\langle \mathsf{Final} | \mathcal{L}_{\mathsf{leptons-nucleons}} | \mathsf{Initial} \rangle = \langle \mathsf{Final} | \int dx j^{\mu}(x) J_{\mu}(x) | \mathsf{Initial} \rangle$$

- Nuclear structure calculation of the initial and final states: Shell model, QRPA, IBM, Energy-density functional Ab initio many-body methods GFMC, Coupled-cluster, IM-SRG...
- Lepton-nucleus interaction: Hadronic current in nucleus: phenomenological, effective theory of QCD
 V. Cirigliano's talk

$0\nu\beta\beta$ nuclear matrix elements: last 5 years

Comparison of nuclear matrix element calculations: 2012 vs 2017

What have we learned in the last 5 years?

$0\nu\beta\beta$ decay nuclear matrix elements

Large difference in nuclear matrix element calculations: factor $\sim 2-3$

$\mathbf{0}\nu\beta\beta$ decay without correlations

Non-realistic spherical (uncorrelated) mother and daughter nuclei:

- Shell model (SM): zero seniority, neutron and proton J = 0 pairs
- Energy density functional (EDF): only spherical contributions

In contrast to full (correlated) calculation SM and EDF NMEs agree!

NME scale set by pairing interaction

JM, Rodríguez, Martínez-Pinedo, Poves PRC90 024311(2014)

NME follows generalized seniority model:

 $M_{GT}^{0\nu\beta\beta} \simeq \alpha_{\pi} \alpha_{\nu} \sqrt{N_{\pi} + 1} \sqrt{\Omega_{\pi} - N_{\pi}} \sqrt{N_{\nu}} \sqrt{\Omega_{\nu} - N_{\nu} + 1}, \text{ Barea, lachello PRC79 044301(2009)}$

Heavy-neutrino exchange nuclear matrix elements

Contrary to light-neutrino-exchange, for heavy-neutrino-exchange decay shell model, IBM, and EDF matrix elements agree reasonably!

Neacsu et al. PRC100 052503 (2015)

Longer-range nuclear correlations drive light-neutrino exchange diffs. Heavy ν 's: short-range correlations Cruz-Torres et al. arXiv:1710:07966

Heavy-neutrino exchange and correlations

Compared to light-neutrino exchange

heavy neutrino exchange dominated by shorter internucleon range, larger momentum transfers

heavy neutrino exchange contribution from J > 0 pairs smaller: pairing most relevant

⇒ Long-range correlations (except pairing) not under control JM, JPG 45 014003 (2018) ^{10/23}

Pairing correlations and $0\nu\beta\beta$ decay

 $0\nu\beta\beta$ decay favoured by proton-proton, neutron-neutron pairing, but it is disfavored by proton-neutron pairing

Ideal case: superfluid nuclei reduced with high-seniorities

Addition of isoscalar pairing reduces matrix element value

Shell model matrix elements in two shells

Ab initio many-body methods

Oxygen dripline using chiral NN+3N forces correctly reproduced ab-initio calculations treating explicitly all nucleons excellent agreement between different approaches

No-core shell model (Importance-truncated)

In-medium SRG Hergert et al. PRL110 242501(2013)

Self-consistent Green's function

Cipollone et al. PRL111 062501(2013)

Coupled-clusters

Jansen et al. PRL113 142502(2014)

Chiral effective field theory

Chiral EFT: low energy approach to QCD, nuclear structure energies Approximate chiral symmetry: pion exchanges, contact interactions Systematic expansion: nuclear forces and electroweak currents

β decay in very light nuclei: GFMC vs NCSM

Quantum Monte Carlo, No Core Shell Model β decays in $A \le 10$ Pastore et al. PRC97 022501 (2018), G. Hagen et al., INT-18-1a program

β decay in medium-mass nuclei: IMSRG

TRIUMF

"Quenching" of g_A in Gamow-Teller Decays

VS-IMSRG calculations of GT transitions in sd, pf shells Minor effect from consistent effective operator Significant effect from neglected 2-body currents

Ab initio calculations explain data with unquenched g_A

From J. Holt, INT-18-1a program

Open questions: transition operator

(f)

Test of nuclear structure

Test of $0\nu\beta\beta$ decay: comparison of predicted $2\nu\beta\beta$ decay vs data, momentum transfers $q \sim 100$ MeV: μ -capture, inelastic ν scattering

Shell model reproduce $2\nu\beta\beta$ data including "quenching" common to β decays in same mass region

Shell model prediction previous to ⁴⁸Ca measurement!

$$M^{2\nu\beta\beta} = \sum_{k} \frac{\langle 0_{f}^{+} | \sum_{n} \sigma_{n} \tau_{n}^{-} | 1_{k}^{+} \rangle \langle 1_{k}^{+} | \sum_{m} \sigma_{m} \tau_{m}^{-} | 0_{f}^{+} \rangle}{E_{k} - (M_{i} + M_{f})/2}$$

many multipoles (*J* values), like $0\nu\beta\beta$ decay

Double Gamow-Teller strength distribution

Measurement of Double Gamow-Teller (DGT) resonance in double charge-exchange reactions ⁴⁸Ca(pp,nn)⁴⁸Ti proposed in 80's Auerbach, Muto, Vogel... 1980's, 90's

Recent experimental plans in RCNP, RIKEN (⁴⁸Ca), INFN Catania Takaki et al. JPS Conf. Proc. 6 020038 (2015) Capuzzello et al. EPJA 51 145 (2015), Takahisa, Ejiri et al. arXiv:1703.08264

Promising connection to $\beta\beta$ decay, two-particle-exchange process, especially the (tiny) transition to ground state of final state

Two-nucleon transfers related to $0\nu\beta\beta$ decay matrix elements Brown et al. PRL113 262501 (2014)

⁴⁸Ca Double Gamow-Teller distribution

Calculate with shell model ⁴⁸Ca 0⁺_{gs} Double Gamow-Teller distribution

$$B(DGT^{-}; \lambda; i \to f) = \frac{1}{2J_i + 1} \left| \left\langle {^{48}}\mathsf{Ti} \right| \left| \left[\sum_{i} \sigma_i \tau_i^- \times \sum_{j} \sigma_j \tau_j^- \right]^{(\lambda)} \right| \right| {^{48}}\mathsf{Ca}_{gs} \right\rangle \right|^2$$

Shell model calculation with Lanczos strength function method Double GT resonances in one and two shells rather similar result Shimizu, JM, Yako, PRL120 142502 (2018)

DGT and $0\nu\beta\beta$ decay: heavy nuclei

DGT transition to ground state

 $M^{\rm DGT} = \sqrt{B(DGT_{-}; 0; 0^+_{\rm gs} \rightarrow 0^+_{\rm gs})}$

very good linear correlation with $0\nu\beta\beta$ decay nuclear matrix elements

Correlation holds across wide range of nuclei, from Ca to Ge and Xe

Common to shell model and energy-density functional theory $0 \leq M^{0\nu\beta\beta} \leq 5$ disagreement to QRPA

Shimizu, JM, Yako, PRL120 142502 (2018)

Short-range character of DGT, $0\nu\beta\beta$ decay

Correlation between DGT and $0\nu\beta\beta$ decay matrix elements explained by transition involving low-energy states combined with dominance of short distances between exchanged/decaying neutrons Bogner et al. PRC86 064304 (2012)

 $0\nu\beta\beta$ decay matrix element limited to shorter range

Short-range part dominant in double GT matrix element due to partial cancellation of mid- and long-range parts

Long-range part dominant in QRPA DGT matrix elements

Shimizu, JM, Yako, PRL120 142502 (2018)

Summary

Nuclear matrix elements are key for the design of next-generation tonne-scale $0\nu\beta\beta$ decay experiments and for fully exploiting the experimental results

- Present matrix element calculations disagree Need improved calculations, guidance from other nuclear experiments
- Ab initio matrix elements in light nuclei ab initio matrix elements in ββ emitters soon!
- Double Gamow-Teller transitions pursued in RIKEN, INFN LNS, RCNP Osaka can provide very useful insight on value of 0νββ decay matrix elements

Collaborators

Graduate School of Science University of Tokyo

Center for Nuclear Study (CNS)

N. Shimizu Y. Tsunoda

M. Honma

K. Yako

- Y. Utsuno
- E. A. Coello Pérez
- G. Martínez-Pinedo
- A. Schwenk
- A. Poves
- T. R. Rodríguez
- E.Caurier
- F. Nowacki

האוניברסיטה העברית בירושלים The Hebrew University of Jerusalem

D. Gazit

J. Engel

N. Hinohara

Y. Iwata