

Nuclear PDF, small x physics results at RHIC

Xuan Li (LANL)

Outline

- Motivation.
- Study the nuclear gluon PDF in the low x region at RHIC:
 - forward π^0 and correlations.
- Study the nuclear dependence in p+A, d+A and ³He+A collisions:
 - Ridge in long-range correlations.
- New and future measurements:
 - Mid-rapidity π^0 and direct γ , near-forward charged hadron nuclear modification measurements.
 - EIC
- Summary & Outlook

Little known of sea quark and gluon PDF at low x

 Nucleon parton PDF has been well determined in the momentum fraction range of 10⁻⁴<x<0.3 at HERA.

From nucleon to nucleus

• Beyond linear evolution, when gluon recombination balances gluon splitting, saturation is realized.

Nucleus A (A>>1)

- Nuclear (mass number A) gluon density ≈ A^{1/3} × nucleon gluon density at a given x.
- Leading to the expectation saturation scale Q_s²≈A^{1/3} x^β. [Phys.Rev.D 78(2008)014016].

How to probe low x gluons

• Low x require low p_T , forward rapidity and large Vs.

- Large rapidity $(\eta_{\pi} \sim 4)$ inclusive π production and correlations probe asymmetric partonic collisions.
- Mostly high- x_q valence quark (x>0.2) + low- x_g gluon (x<0.01).
- Forward back-to-back correlations can probe low x gluon.

STAR and **PHENIX** detectors

 STAR has detector spans -1<η<4.5 with full azimuthal coverage.

Forward Meson Spectrometer (2.5<η<4.5)
 476×3.8-cm cells, 788×5.8-cm cells

• PHENIX has detector spans

Muon Piston Calorimeter (3.1<|η|<3.9).

Upgrade with MPC-EX in 2015.

Access low x gluons with forward hadron and correlation studies

Significant nuclear modification of forward π^0 within Au nuclei

Forward π^0 -forward π^0 correlations are more sensitive to low x gluons than inclusive production.

Shandong University

Xuan Li

Forward-forward rapidity correlation at STAR

 Most Forward-Forward azimuthal correlations at RHIC can probe gluon density at 0.0009 < x < 0.005.

• Similarity of near side peak in pp and dAu data indicate similar initial jet shape in proton and gold nuclei.

Forward-forward rapidity correlation at STAR

 Most Forward-Forward azimuthal correlations at RHIC can probe gluon density at 0.0009 < x < 0.005.

 Significant broadening from pp to dAu in the away side peak indicates prominent nuclear modification of the gluon PDF inside the Au nuclei at low x region.

Access different x region of soft gluon through rapidity scan

The pseudo-rapidity of the associated particle is strongly correlated with soft gluon x in the asymmetric parton scattering mostly high-x_q valence quark (x>0.2) + low-x_g gluon (x<0.01).

Rapidity and centrality dependence of forward di-hadron correlations at STAR

- Clear rapidity dependent broadening of away side peak in the forward di-hadron correlations at STAR.
- Suppression of the forward-forward away-side in central d +Au is consistent with the CGC calculations. Xuan Li (LANL) CIPANP2018

Rapidity, p_T and centrality dependence of forward di-hadron correlations at PHENIX

 Clear rapidity, p_T and centrality dependent broadening and suppression of the away side peak in the di-hadron correlations at PHENIX.

Rapidity, p_T and centrality dependence of forward di-hadron correlations at PHENIX

• Largest suppression of forward di-hadron correlation with lowest p_T observed at PHENIX in central d+Au collisions and is centrality dependent.

Rapidity, p_T and centrality dependence of forward di-hadron correlations at PHENIX

• The centrality dependent suppression of forward dihadrons is consistent with CGC predictions.

CIPANP2018

Rapidity dependent away side broadening

- A large change in the width difference with a small p_T variance indicates a cross over of the dense gluon state boundary.
- A smooth transition from dilute parton system to dense gluon state (or saturation).

Challenges and ongoing/new analysis to access low x gluons

- Timing in the correct trigger is critical for final results.
- High particle density in the forward rapidity causing non-uniform gain of EMCal which is the biggest challenge for experiments.

- New p+Al/Au and d+Au data taken
 in 2015/2016 provide
 opportunities to study the A
 dependence of nuclear gluon PDF.
- New observables:
 - forward di-jets and γ+jet will help reduce the fragmentation impacts.
 - Bottom production and Drell-Yan process can directly access low x gluons.

Ridge in p/d/³He+A collisions?

- Due to dense gluon medium?
- From initial state interactions?
- From small QGP droplet?

arXiv:1805.08847 T. Trainor 2013 JPCS. **420** 012026

arXiv:1206.0148

Ridge of long range correlation in both Heavy Ion and small system at STAR

Ridge of long range correlation in both Heavy Ion and small system at STAR

Ridge of long range correlation in central d/³He+A but not in p+A at PHENIX

Ridge of long range correlation in central d/³He+A but not in p+A at PHENIX

Rapidity dependence of Ridge in central d+Au

• Ridge evolves with $\Delta \eta$ in central d+Au collisions like what has been observed at the LHC.

New and future measurements

 need to subtract other cold nuclear matter effects to understand the nuclear PDF

Mid-rapidity $\pi^0 R_{p/d/He+Au}$ and direct γR_{p+Au}

• Access intermediate x gluons with mid-rapidity π^0 and direct

- Cronin effect in the intermediate p_T region and energy loss in the high p_T region for $\pi^0 R_{p/d/He+Au}$.
- Indication of thermal photon or hot hadron gas formation at low p_T in p+Au collisions.

Near-forward/backward charged hadron R_{p+Au/Al}

- At positive rapidity (p going direction), larger suppression of R_{p+Au} than R_{p+Al} at low p_T region.
- At negative rapidity (A going direction), likely larger enhancement of R_{p+Au} than R_{p+Al} at intermediate p_T region.

 Is the enhancement in the A going direction due to multiple particle scattering? Need theory interpretation.

Future nuclear PDF studies at low x

- The final state hadrons in hadron/nuclei collisions are complex objects that can include not only color interactions from initial states but also from final states.
- A Electron Ion Collider (EIC)?

- Go to lower x at EIC.
- Inclusive DIS process is much cleaner than the hadron-hadron Interaction but can not directly access gluons.

Summary and Outlook

- RHIC is the ideal place to study nuclear gluon PDF at low x region.
- Significant nuclear modification of forward π⁰ and correlations measured in d+Au collisions at STAR and PHENIX. Suppression in central d+Au collisions is consistent with CGC prediction.
- To extract the nuclear PDF information, need to consider the geometry structure of p+A, d+A and ³He +A collision systems, the multiple particle scattering effects, energy loss and etc.
- Ongoing rapidity dependent hadron, heavy flavor and correlation studies will provide further constrains on the nuclear PDF.
- Continue to explore the nuclear PDF in the low x region at the Electron Ion Collider.

Backup

The soft gluon x is related to associated particle in correlations

• The pseudo-rapidity of the associated particle is strongly correlated with soft gluon x in the asymmetric parton scattering mostly high- x_q valence quark (x>0.2) + low- x_g gluon (x<0.01). CIPANP2018 Xuan Li (LANL) 30

Summary on the correlation peak

Compare the width differences of the away side-peak between p+p to d+Au collisions for different di-hadron correlations.

Forward-forward rapidity correlation

Centrality cut on the dAu data.

