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Critical point
– end of phase coexistence –
is a ubiquitous phenomenon

Water:

Is there one in QCD?
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QCD critical point

QCD is a relativistic QFT of a fundamental force,
not quite like non-relativistic fluids.

But a critical point is a very universal phenomenon –
it takes 2 phases whose coexistence (first-order transition) ends.

In QCD:

The two phases: quark-gluon plasma and hadron gas.
Experiments: QGP has liquid properties – almost perfect fluidity.

If the phases are separated by a first-order phase transition,
there must also be a critical point!
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QCD phase diagram (sketch)

Quarkyonic
   regime

QGP
(liquid)

critical point

nuclear
matter
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? CFL+

?

Lattice QCD at µB . 2T – a crossover (Bazavov’s talk)

Therefore, if at larger µB ∃ first-order transition⇒ ∃ critical point
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Critical point discovery challenges

Essentially two approaches to discovering the QCD critical point.

Each with its own challenges.

Lattice simulations. Sign problem.

Heavy-ion collisions.

Encouraging progress
and intriguing new results:

talks by Bazavov and Esha
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Challenge in connecting the two: non-equilibrium dynamics.

M. Stephanov QCD phase diagram CIPANP 2018 5 / 19



Fluctuations as signatures of the critical point

Fluctuations are observables on the lattice and in heavy-ion collisions.

The key equation:

P (σ) ∼ eS(σ) (Einstein 1910)

At the critical point S(σ) “flattens”. And χ ≡ 〈δσ2〉V →∞.

CLT?

δσ is not an average of∞ many uncorrelated contributions: ξ →∞

In fact, 〈δσ2〉 ∼ ξ2/V .
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Higher order cumulants

n > 2 cumulants (shape of P (σ)) depend stronger on ξ.

E.g., 〈σ2〉 ∼ ξ2 while κ4 = 〈σ4〉c ∼ ξ7 [PRL102(2009)032301]

For n > 2, sign depends on which side of the CP we are.

This dependence is also universal. [PRL107(2011)052301]

Using Ising model variables:
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Mapping Ising to QCD phase diagram

T vs µB:

In QCD (t,H)→ (µ− µCP, T − TCP)

κn(N) = N +O(κn(σ))
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Beam Energy Scan I: intriguing hints
Equilibrium κ4 vs T and µB:

“intriguing hint” (2015 LRPNS)
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Non-equilibrium physics is essential near the critical point.

The challenge taken on by

Goal: build a quantitative theoretical framework describing criti-
cal point signatures for comparison with experiment.

Strategy:

Parameterize QCD equation of state with unknown TCP and µCP

as variable parameters.

Use it in a hydrodynamic simulation and compare with experi-
ment to determine or constrain TCP and µCP.
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Parameterized EOS for hydro simulations
Parotto et al, 1805.05249

Variable parameters (TCP, µCP, slopes, etc.) control Ising-QCD
mapping near the QCD critical point: P = PNon-Ising + P Ising.
Lattice data at µB = 0 is matched:

This EOS can be used in a hydrodynamic simulation.
M. Stephanov QCD phase diagram CIPANP 2018 11 / 19
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Hydrodynamics breaks down near the critical point

Hydrodynamics, as an EFT, relies on separation of scales:

Evolution rate (e.g., expansion time, O(10)fm) much slower than
the local equilibration rate (typically, O(0.5− 1)fm).

Critical slowing down means relaxation time diverges:
τrelaxation ∼ ξz (z ≈ 3).

When τrelaxation ∼ τexpansion hydrodynamics breaks down.

In fact, magnitude of ξ, and thus fluctuations/cumulants κn ∼ ξp,
is estimated using ξ ∼ τ1/z

expansion.

To be more quantitative we need to describe the breakdown of
hydro due to critical slowing down.
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Hydro+

This is similar to the breakdown of effective theory due to some
modes (fields) which we might have (incorrectly) “integrated out”,
but which are slower than the processes we happen to consider.

Breakdown of locality is manifested in large gradient corrections
to pressure due to ζ ∼ ξ3 →∞.

phydro = pequilibrium − ζ∇ · v

Extending hydro by adding the critically slow modes→ Hydro+
[MS-Yin,1712.10305]
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What are the additional slow modes?

An equilibrium thermodynamic state is completely
characterized by average values ε̄, n̄, . . ..

Fluctuations of ε, n are given by eos: P ∼ exp(Seq(ε, n)).

Hydrodynamics describes partial-equilibrium states,
i.e., equilibrium is only local, because equilibration time ∼ L2.

Fluctuations in such states are not necessarily in equilibrium.
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Nonequilibrium fluctuations

Measures of fluctuations are additional variables needed to
characterize the partial-equilibrium state.

2-point (and n-point) functions of fluctuating hydro variables:
〈δεδε〉, 〈δnδn〉, 〈δεδn〉, . . . . (Or probability functional).

Relaxation rates of 2pt functions is of the same order as that of
corresponding 1pt functions.

But effects of fluctuations are usually suppressed due to
averaging out:

√
ξ3/V ∼ (kξ)3/2 � 1 by CLT.
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Critical fluctuations

Near CP there is parametric separation of relaxation time scales.

The slowest and thus most out-of-equilibrium mode is s/n ≡ m.

Rate of m at scale k ∼ ξ−1,

Γ ∼ Dξ−2 ∼ ξ−3,

is of order of that for sound
at much smaller k ∼ ξ−3.

The effect of δm fluctuations
(kξ)3/2 = O(1)!

Thus we need 〈δmδm〉 as
the independent variable(s)
in hydro+ equations.
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Relaxation of fluctuations to equilibrium

The new variable is 2-pt function 〈δmδm〉 (Wigner transform):

φQ(x) =

∫
∆x
〈 δm(x + ∆x/2) δm(x−∆x/2) 〉 eiQ·∆x

Dependence on x (∼ L) is much slower than on ∆x (∼ ξ).

Hydro(+) describes relaxation to eqlbrm, maximizing entropy:

s(+)(ε, n, φQ) = s(ε, n) +
1

2

∫
Q

(
1− φQ

φ̄Q
+ log

φQ
φ̄Q

)
Entropy = log # of states, depends on the width φQ.

S(+) maximized for φ = φ̄ – eqlbrm fluct. magnitude.

Relaxation eq.: (u ·∂)φQ = −γπ(Q)πQ, πQ = −(∂s(+)/∂φQ)ε,n

γπ(Q) is universal. γπ(Q ∼ ξ−1) ∼ ξ−3.
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Hydro+ vs Hydro: real-time bulk response

Characteristic Hydro/Hydro+ crossover rate Γξ = Dξ−2 ∼ ξ−3.

Dissipation during expansion is
overestimated in hydro (dashed):

Only modes with ω � Γξ
experience large ζ.

Stiffness of eos (sound speed) is
underestimated in hydro (dashed):

Only modes with ω � Γξ are
critically soft (cs → 0 at CP).
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Summary

A fundamental question about QCD:

Is there a critical point on the QGP-HG boundary?

Lattice: crossover for µB . 2Tc.

Thus first-order transition for larger µB ⇔ critical point.

Intriguing results from experiments (BES-I).
More to come from BES-II (also FAIR/CBM, NICA, J-PARC).

Quantitative theoretical framework is needed⇒ .

In H.I.C., the magnitude of the fluctuation signatures of CP is
controlled by dynamical non-equilibrium effects.

In turn, critical fluctuations affect hydrodynamics.

The interplay of critical and dynamical phenomena: Hydro+.
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More
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Critical fluctuations and experimental observables

Observed fluctuations are related to fluctuations of σ.
[MS-Rajagopal-Shuryak PRD60(1999)114028; MS PRL102(2009)032301]

Think of a collective mode described by field σ such that m = m(σ):

δnp = δnfree
p +

∂〈np〉
∂σ

× δσ

The cumulants of multiplicity M ≡
∫
p np:

κ4[M ] = 〈M〉︸︷︷︸
baseline

+ κ4[σ]× g4
( )4

︸ ︷︷ ︸
∼M4

+ . . . ,

=

∫
p

np
γp

← acceptance dependent
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