QCD, Hadron Spectroscopy, and Exotics

Seamus Riordan seamus@anl.gov

with Raul Briceno and Bernhard Ketzer

June 3, 2018

QCDHS — CIPANP18 QCDHS 1/24

QCD, Hadron Spectroscopy, and Exotics Overview

Session Topics

- Heavy Quarks and Spectroscopy
- Electromagnetic Nucleon Interactions
- Numerical Methods (with NFS)
- Light Quark Hadrons
- Proton Radius (with PPHI)

Conveners

- Raul Briceno, JLab
- Bernhard Ketzer, Bonn
- SR, ANL

Heavy Quarks

Parallel 2

- Model Independent Constraints on R(J/ψ) Lamm, Maryland
- Implication of Chiral Symmetry on the Heavy-Light Spectroscopy Du, Universität Bonn
- Precise Measurement of the $D^*(2010)^+ D^+$ Mass Difference Soffer, Tel Aviv
- Dibaryon Searches in Decuplet Baryons from Lattice QCD Gongyo, RIKEN
- Single-Top Production in the Standard Model and Beyond Kidonakis, Kennesaw State
- Measurement of Polarization Observables in the Reaction $\gamma p \rightarrow K^+ \Lambda$ Adhikari, Florida International

Chiral Symmetry on the Heavy-Light Spectroscopy, Du

Positive parity ground state charm mesons

S. Godfrey and N. Isgur, PRD 32, 189 (1985)

BaBar (2003), CLEO (2003); Belle (2004)

Menglin Du (HISKP, Univ. Bonn)	Resolving the $D_0^*(2400)$ puzzle			Palm Springs, May 29, 2018	3 / 22
OCDHS — CIPANP18		OCDHS	4/24		

Chiral Symmetry on the Heavy-Light Spectroscopy, Du

- χ FT to help address D^* positive parity anomalies
- Identifies $D_{s0}^{*}(2317)$ and $D_{s1}(2460)$ as likely having molecular component
- Describes LHCb data for $B_s^0 \rightarrow \bar{D}^0 K^- \pi^+$ and finds two lighter states which would resolve puzzle

Parallel 5

- Two-Photon Effects in Elastic Nucleon Form Factors Vanderhaeghen, Mainz
- High Q² Elastic Form Factor Program at Jefferson Lab Puckett, UConn
- Sum Rules Connecting Real and Virtual Compton Scattering on the Nucleon Pascalutsa (for Vadim Lensky), Mainz
- Proton Polarizabilities from a Partial-Wave Analysis of Compton Scattering Data Pascalutsa, Mainz

Rosenbluth vs polarization transfer measurements of G_E/G_M of proton

12

QCDHS — CIPANP18 QCDHS 6/24

- New data from OLYMPUS studying 2γ still have puzzles with theory
- New full dispersive treatment of πN to constrain 2γ box diagrams

- Agreement better at lower Q^2 and larger ϵ
- Should be applied to magnetic radius extraction

Compton Scattering PWA, Pascalutsa

Our PWA Anzatz

I. Determine L=1 multipoles in the following **model-independent** form:

$$\begin{split} \vec{f}_{EE}^{1+}(E_{T}) &= E_{T}^{2} \frac{M}{\sqrt{s}} \left[\frac{\alpha_{E1}}{3} + \frac{E_{T}}{3} \left(-\frac{\alpha_{E1} + \beta_{M1}}{M} + \gamma_{E1E1} \right) + \left(\frac{E_{T}}{M} \right)^{2} f_{T}^{R}(E_{T}) \right], \\ \vec{f}_{EE}^{1-}(E_{T}) &= E_{T}^{2} \frac{M}{\sqrt{s}} \left[\frac{\alpha_{E1}}{3} + \frac{E_{T}}{3} \left(-\frac{\alpha_{E1} + \beta_{M1}}{M} - 2\gamma_{E1E1} \right) + \left(\frac{E_{T}}{M} \right)^{2} f_{2}^{R}(E_{T}) \right], \\ \vec{f}_{MM}^{1+}(E_{T}) &= E_{T}^{2} \frac{M}{\sqrt{s}} \left[\frac{\beta_{M1}}{3} + \frac{E_{T}}{3} \left(-\frac{\beta_{M1} + \alpha_{E1}}{M} + \gamma_{M1M1} \right) + \left(\frac{E_{T}}{M} \right)^{2} f_{3}^{R}(E_{T}) \right], \\ \vec{f}_{MM}^{1-}(E_{T}) &= E_{T}^{2} \frac{M}{\sqrt{s}} \left[\frac{\beta_{M1}}{3} + \frac{E_{T}}{3} \left(-\frac{\beta_{M1} + \alpha_{E1}}{M} - 2\gamma_{M1M1} \right) + \left(\frac{E_{T}}{M} \right)^{2} f_{3}^{R}(E_{T}) \right], \\ \vec{f}_{MM}^{1+}(E_{T}) &= E_{T}^{2} \frac{M}{\sqrt{s}} \left[\frac{\gamma_{E1M2}}{6} + \frac{E_{T}}{6} \left(-\frac{\beta_{E1M2} + 3\gamma_{M1E2} + 3\gamma_{M1M1}}{4M} - \frac{\beta_{M1}}{8M^{2}} + \left(\frac{E_{T}}{M} \right)^{2} f_{5}^{R}(E_{T}) \right], \\ \vec{f}_{ML}^{1+}(E_{T}) &= E_{T}^{2} \frac{M}{\sqrt{s}} \left[\frac{\gamma_{E1M2}}{6} + \frac{E_{T}}{6} \left(-\frac{-6\gamma_{M1E2} + 3\gamma_{E1M2} + 3\gamma_{E1E1}}{4M} - \frac{\alpha_{E1}}{8M^{2}} + \left(\frac{E_{T}}{M} \right)^{2} f_{5}^{R}(E_{T}) \right) \right], \\ \vec{f}_{ML}^{1+}(E_{T}) &= E_{T}^{2} \frac{M}{\sqrt{s}} \left[\frac{\gamma_{M1}}{6} + \frac{E_{T}}{6} \left(-\frac{-6\gamma_{M1E2} + 3\gamma_{E1M2} + 3\gamma_{E1E1}}{4M} - \frac{\alpha_{E1}}{8M^{2}} \right) + \left(\frac{E_{T}}{M} \right)^{2} f_{5}^{R}(E_{T}) \right] \right], \\ \vec{f}_{ML}^{1+}(E_{T}) &= E_{T}^{2} \frac{M}{\sqrt{s}} \left[\frac{\gamma_{M1}}{6} + \frac{E_{T}}{6} \left(-\frac{-6\gamma_{M1E2} + 3\gamma_{E1M2} + 3\gamma_{E1E1}}{4M} - \frac{\alpha_{E1}}{8M^{2}} \right) + \left(\frac{E_{T}}{M} \right)^{2} f_{5}^{R}(E_{T}) \right] \right]$$

After using sum rules,

4 global parameters (polarizabilities) and 4 energy-dependent (residual functions)

2. The L=2 multipoles are small and are either neglected or taken from ChPT

Vladimir Pascalutsa — Nucleon Polarizabilities— CIPANP — Indian Wells, CA— May 31, 201

19

QCDHS — CIPANP18 QCDHS 9/24

Compton Scattering PWA, Pascalutsa

- New PWA below π threshold of proton Compton data
- Call for new 100 MeV backwards Compton Scattering data

QCDHS — CIPANP18 QCDHS 10/24

Joint NFS/QCDHS - Numerical Methods

Parallel 7

- Status of Baryon-Baryon Interactions from Lattice QCD Beane, UW
- HOBET: The SM as an Effective Theory and its Direct Matching to LQCD McElvain, UBC
- Effective-Field-Theory Extrapolations of Lattice-QCD Predictions for Light Nuclei Kirscher, CCNY
- New Developments in Lattice Effective Field Theory Lee, MSU

Lattice effective field theory

Review: D.L, Prog. Part. Nucl. Phys. 63 117-154 (2009) TALENT summer school lectures: qmc2016.wordpress.ncsu.edu

- Reconstructing nuclear properties such as radii
- Also able to study thermodynamic properties (heat capacities, α boiling)

- Reconstructing nuclear properties such as radii
- Also able to study thermodynamic properties (heat capacities, α boiling)

Also seeing evidence of a superfluid state for diffuse neutron gas

Parallel 8

- Analysis of $\eta\pi^0$ and $\eta'\pi^0$ Systems at GlueX Austregesilo, JLab
- Toward Precise Determination of Resonant Hadron Scattering Amplitudes from Lattice QCD Bulava, Southern Denmark
- A Lattice QCD Study of the *ρ* Resonance Leskovec, Arizona
- Measurement of Transition Form Factors at BES-III Redmer, Mainz
- Unitary Reaction Models and PWA Formalisms Pilloni, JLab

LQCD Resonant Hadron Scattering Amplitudes, Bulava

- Dark points: N200 $(L = 3.12 \text{fm}, a = 0.065 \text{fm}, m_{\pi} = 280 \text{MeV})$
- Gray points: N4O1 $(L = 3.65 \text{fm}, a = 0.076 \text{fm}, m_{\pi} = 280 \text{MeV})$
- Finite volume and cutoff effects not visible with our current statistics.

LQCD ρ , Leskovec

I=1 $P\text{-wave }\pi\pi$ Scattering and the ρ Resonance $_{\text{comparing }BW \ I}$ and $_{BW \ II}$

Unitary Reaction Models and PWA Formalisms, Pilloni

• Searching for resonances in $\eta\pi$ and $Z_c(3900)$ (tetraquark?)

QCDHS — CIPANP18 QCDHS 16/24

Joint QCDHS/PPHI - Proton Radius Puzzle

Parallel 9

- The Proton Radius Puzzle Why We All Should Care Miller, UW
- The Rydberg Constant and Proton Size from Atomic Hydrogen Maisenbacher, Max Plank Inst. for Quantum Optics
- Data Analysis and Preliminary Results of the Proton Charge Radius Experiment (PRad) at JLab Ziong, Duke
- Determination of the Protons Charge Radius by Simultaneous Measurement of Electron- and Muon-Proton Elastic Scattering with the MUSE Experiment at PSI Reimer, ANL
- Lattice QCD and the Proton Radius Syritsyn, SBU
- Nucleon Form Factors in Dispersively Improved Chiral Effective Theory Weiss, JLab

4 % in radius: why care?

• Can't be calculated to that accuracy? Sergey Syritsyn

Is the muon-proton interaction the same as the electron-proton interaction? violation of universality connections with muon g-2? connections with LHCb ?

Outline - a) review history experiments b) List & explain possible resolutions

Why We All Should Care, Miller

Allowed mass range from 200 KeV to 3 MeV

QCDHS — CIPANP18 QCDHS 18/24

Proton Size from Atomic Hydrogen, Maisenbacher

Proton radius and Rydberg constant (2017)

 $\nu_{2S-4P} = 616\,520\,931\,626.8\,(2.3)\,\text{kHz}$

 $R_{\infty} = 10\,973\,731.568\,076\,(96)\,\mathrm{m}^{-1}, r_p = 0.8335(95)\,\mathrm{fm}$

2S-4P (MPQ 2017): A. Beyer, L. Maisenbacher, A. Matveev et al., Science 358, 79 (2017)

QCDHS — CIPANP18 QCDHS 19/24

Proton Size from Atomic Hydrogen, Maisenbacher

1S-3S transition

Two-photon transition from ground state

(First-order) Doppler-free excitation with two ${\bf 205}$ ${\bf nm}$ photons

Natural line width of **Γ** = 1 MHz; proton radius puzzle: ~7 kHz

Two complementary measurements in progress:

Single 1S-3S line scan at MPQ

	LKB (F. Nez et al.)	MPQ (Th. Udem et al.)		
Excitation	CW laser	Picosecond frequency comb		
Atom source	Room temperature beam	Cryogenic (7 K) beam		
	Large (~ 130 kHz) second-order Doppler shift	Chirp of pulsed laser causes first- order Doppler shift		
Most recent uncertainty	2.6 kHz (2018) [1]	17 kHz (2016) [2] preliminary: ~ 1 kHz (2018)		
	[4] 46 26 (MDO): D. C. V	at at al. Bhua Bau A 02 042500 (2016)		

S-3S (MPQ): D. C. Yost *et al.*, *Phys. Rev. A* **93**, 042509 (2016)
S-3S (LKB): H. Fleurbaey *et al.*, *Phys. Rev. Lett.* **120**, 183001 (2018)

PRad Preliminary Results, Ziong

PRad Experimental Apparatus

PRad Preliminary Results, Ziong

Form Factor G_E (Preliminary)

- Proton electric form factor G_E v.s. Q², with 2.2 and 1.1 GeV data (preliminary)
- Systematic uncertainties shown as colored error bars
- Preliminary G_E slope seems to favor smaller radius

Proton Electric Form Factor G_F

e^{\pm} and μ^{\pm} -Proton Elastic with the MUSE, Reimer

QCDHS — CIPANP18 QCDHS 21/24

e^{\pm} and μ^{\pm} -Proton Elastic with the MUSE, Reimer

PROTON'S SIZE VS PROBE AND METHOD

Lattice QCD and the Proton Radius, Syritsyn

Derivatives wrt. Initial and Final Momenta

Dispersively Improved Chiral Effective Theory, Weiss

Results: Form factors

6

• Form factors evaluated using DR

 $\pi\pi$ isovector spectral function calculated in ${\rm DI}\chi{\rm EFT}$

High-mass states described by effective pole, strength fixed by sum rules (charges, radii)

• Excellent agreement with data

Not fit, but dynamical prediction. Theoretical uncertainty estimates

END

QCDHS — CIPANP18 QCDHS 24/24