

Status and future for the NEXT collaboration in neutrinoless double beta decay

NEXT-NEW Xenon pressure chamber

Sereres Johnston For the NEXT collaboration

May 29, 2018

Outline

- Majorana Neutrino
- Intro to NEXT
- Recent Operation
- Ongoing R&D
- Summary

Majorana Neutrino

- What if Neutrino and Anti-Neutrino were fundamentally the same?
- Antiparticle / Particle behavior would be determined by helicity

Dirac

- Opposite particle / antiparticle parity
- All charged fermions

Majorana

- Parity does not separate particle / antiparticles
- Neutrinos only candidates

Experimental Signal

Why Use Xenon Gas

High pressure capsule of liquid Xe

 $^{136}Xe~decays~via~\beta\beta$ – $^{^{136}Ba~daughter}$

High Q value - Above many backgrounds

Source = Detector - Xe is Scintillator

Fluid Material - Constant purification

Energy Resolution - Intrinsic: 0.3%FWHM

Topology Discrimination - Single vs. Double β

0νββ Decay Resolution, Topology

- DBDM demonstrator: Near intrinsic resolution 662keV ¹³⁷Cs source ~1% FWHM
- $Q_{_{\beta\beta}}$ extrapolation @ 2459keV: ~0.5% FWHM expected

NEXT-DEMO Prototype:

 ²²Na 1275keV γ interaction Single electrons
 ²²⁸Th decay chain γ conversion Electron/Positron pairs
 Discrimination algorithm: Background rejection 24.3% Signal efficiency 66.7%

Neural Networks: Improvement factor 1.2-1.6 2017 JINST 12 T01004

NEXT

Neutrino Experiment Xenon TPC (Time Projection Chamber)

Canfranc Underground Laboratory (LSC)

Currently Running Class 10 kg

Class 100 kg: 2019

NEXT Pressure Vessels

- 10-15 bar operation
- **Room Temperature**
- 10 and 100 kg Vessels

Next-100 Vessel

Lead Castle

Xenon Time Projection Chamber

Energy Deposited

- Ionization
- Scintillation
- Light Detected Electric Field
 - Drifts electron cloud to endcap
 - Detected via sensors
 - 2 dimensional location

Time Delay

- Electrons drift at known rate
- 3rd dimension determined

NEXT Electroluminescent region: Electron cloud detection 2D location

PMTs at cathode: Light detection Precision energy resolution

Separation of Function TPC (SOFT):

Energy plane Tracking plane

Lacking Plane (SiPMs)

The Next White (NEW) Detector

NEXT-White has been operating since October 2017

Arxiv 1804.02409 Submitted to JINST

Scale model for NEXT-100

Paper includes operational detail Detector Support system

TPC parameter	Nominal	Run II (4734)	Run II (4841)
Pressure	15 bar	7.2 bar	9.1 bar
EL field (E/P)	$2.2{\rm kV}{\rm cm}^{-1}{\rm bar}^{-1}$	$1.7 \rm kV cm^{-1} bar^{-1}$	$1.7 \rm kV cm^{-1} bar^{-1}$
EL gap	6 mm	6 mm	6 mm
Vgate	16.2 kV	7.0 kV	8.5 kV
Length	664.5 mm	664.5 mm	664.5 mm
Diameter	454 mm	454 mm	454 mm
Fiducial mass	5 kg	2.3 kg	3 kg
Drift length	$(530.3 \pm 2.0) \mathrm{mm}$	$(530.3 \pm 2.0) \mathrm{mm}$	$(530.3 \pm 2.0) \mathrm{mm}$
Drift field	$400 V cm^{-1}$	$400 V cm^{-1}$	400 V cm^{-1}
Vcathode	41 kV	28 kV	30 kV

Argonne

Calibration of the NEXT-White detector using ^{83m}Kr decays

50

Arxiv 1804.01780 Submitted to JINST

Krypton Decays: Energy calibration Light Map

Correct finite drift-electron lifetime Correct energy/position

Energy Resolution: 3.88±.05%FWHM At 41.5 keV point-like Kr decay Restricted fiducial volume

Scale to ROI:

0.504±.005%FWHM At 2458 keV Qbb Restricted fiducial volume

$$R_{int} = 2.35 \sqrt{\frac{F}{\bar{N}_e}} \sim 0.3 \%$$

Calibration of the NEXT-White detector using ^{83m}Kr decays

Energy map for Run 4734

Measurement of Radon-induced backgrounds

Radon Chain Backgrounds Alpha: ²²²Rn, ²¹⁸Po, ²¹⁴Po Beta: ²¹⁴Bi

Three Run Periods Cold purifier Rn contamination

Alpha Specific Activity: 37.5±2.3±5.9 mBq/m³

Beta Fiducial Rate ROI: <0.2 cts/year

Scenario	Total ²¹⁴ Bi activity from	Background	$\beta\beta0\nu$ background rate
	cathode $(counts/yr)$	acceptance	(counts/yr)
Optimistic	$(9.7 \pm \pm 1.6) \times 10^4$	7×10^{-8}	$(6.8 \pm 1.1) \times 10^{-3}$
Pessimistic	$(6.0\pm\pm1.0)\times10^5$	$2.7 imes 10^{-7}$	0.16 ± 0.03

Arxiv 1804.00471 Submitted to JHEP

Measurement of Radon-induced backgrounds

Z (mm)

Energy (keV)

Electron drift properties in high pressure gaseous xenon

Electron Lifetime: Exponential fit of S2 vs Drift Time 7.2 bar: (1617±40) µs lifetime

Drift Velocity

Maximum Drift Time Cathode/gate distance $967.99\pm0.17(stat.)\pm4.06(sys.) \ \mu m \mu s^{-1}$

Arxiv 1804.1680 Submitted to JINST

NEXT-100

- Vessel, gas system, shielding - IFIC, UPV, IGFAE, DIPC, LSC
- Electroluminescent gate, Cathode - UTA
- Field cage, feed through

 ANL
- TPC integration - Harvard
- Installation expected 2019

 Commissioning, physics run 2020-2021

Argonne's Xenon TPC R&D

• Field Cage

- Shape electric field
- Provide structure to barrel
- Reflect light
- Ultra low background materials

High Voltage Feed Through

- Introduce voltage to pressure vessel
- Maintain voltage at catholde
- No sparking, no breakdown
- Ultra low background materials
- Test Facility
 - High Pressure Vessel
 - Purifying gas system

Field Cage

Conceptual Design Process

- Wide range of design considered
- Assessed on 8 key points
- Maximize performance
- Minimize risk
- Fiducial mass
 - 69 kg at 15 bar
- Structural mass

~140 kg plastic

Ring detail matches NEXT-NEW geometry

Largest fiducial volume using known materials Simplified design reduces background material. Minimizes risk, maximizing performance.

High Voltage Feed Through

Unit: psi

Min: 1.8098e-1

650 550 450

2.9682e-11

Time: 3 Custon Max: 821.73

- Mimic commercial FT design •
 - **Reduces** risks
 - Cable runs inside vessel to cathode
- Plug, Cable •
 - Commercial solutions acceptable
- **Cryo-Assembled Components** •
 - Provides pressure penetration

Argonne Test Facility

- Pressure Vessel
 - 15 bar capable
 - 10⁻⁵ torr vacuum
 - 60 inch length
 - 20 inch diameter
 - Sapphire window
- Planned tests
 - Full length field cage component
 - Reduced diameter required
 - Gas mixtures possible
 - Pressure, high voltage

- Gas System
 - Recirculating
 - Purifier
 - Xenon, Argon Mix
 - RGA

EL Region for NEXT-100

University of Texas at Arlington

- Gate is a supported mesh with HDPE support posts
- Electrical and mechanical tests of candidate support materials have been made in high pressure xenon gas in UTA test facility [1]
- Anode is laser cut from resistive plastic

HV strength of HDPE in HPGXe

[1]: High Voltage Insulation and Gas Absorption of Polymers in High Pressure Argon and Xenon Gases, arXiv:1804.04116

Cathode and Test Facility at UT Arlington

Large scale testing facility designed for high pressure gas and can be used for testing components up to tonne scale proportions

NEXT-100 Cathode has been manufactured and is to be tested in July; EL is in production for testing in later summer / fall.

Summary

- NEXT-NEW Operational

 Stay tuned for new results
- NEXT-100 at ANL
 - Field Cage
 - Feed Through
 - Test Facility
- NEXT-100 at UTA – EL Region – Cathode

