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Quick summary of nuclear reaction theory for astrophysics

Astrophysical nuclear reaction/scattering theory is many things:

1. Direct (radiative or nonradiative) reactions – nonresonant
(A . 12 & near closed shells)

2. Reactions through isolated resonances – 12 . A . 30

3. Reactions at high level density – heavier nuclei mid-shell or far from stability

Phenomenological R-matrix is the right way to approach Case 2

Probably Case 3 will always lean on broad systematics (functions of (A,Z))

I’ll talk about Case 1: Precision is needed for BBN & solar ν’s



Direct reaction theory: typical ingredients

Most methods involve 2 or 3 bodies with effective potentials

Potential shape usually comes from systematics in (A,Z) & depth is tailored
to system modeled

“Spectroscopic factor” of the restricted 2- or 3-body space comes from shell
model or normalization to data

This stuff has served nuclear physics & astrophysics well

But it won’t deliver ∼ 1% error (for BBN, solar ν’s)

Until recently, computational limitations kept nucleon-level models from being
significantly better



Quick survey of ab initio theory

For bound & narrow states at low A there is now well-developed ab initio theory

Starting point is a quantitatively accurate potential describing NN scattering

Off-shell & 3-body terms of potential must come from nuclei, but starting point
is honestly nucleon-level

Several approaches exist (Green’s function Monte Carlo, fermionic molecular
dynamics, no-core shell model, lattice Monte Carlo, coupled cluster. . . )

Low-lying discrete states are well-computed at A . 20, favorable cases out to
A ∼ 100



Making the ab initio continuum tractable

Initial work on ab initio scattering & reactions has focused on making it resemble
bound states

Either:

Discretize the continuum for diagonalization or energy minimization (GFMC,
NCSM, Gamow shell model, fermionic molecular dynamics)

Or:

Project many-body Schrödinger equation into a 2-cluster Schrödinger-like equation
in the desired channel (NCSMC/RGM, lattice EFT)

A lot has been done with nucleon scattering in NCSMC & RGM, but NNN
terms & α scattering are still in early days



Lippmann-Schwinger & related approaches

But Lippmann-Schwinger (integral) formalism generally handles scattering/reaction
boundary conditions better

Ψ(+) = Ψ0 +
(
E −H + iε)−1VΨ0

A lot of the ab initio future probably belongs to integral-equation approaches

I’ve started with “Lippmann-Schwinger lite” in bound states (after Timofeyuk &
Mukhamedzhanov; Pinkston & Satchler)

You can compute Schrödinger wave function accurately at small radius & extract
asymptotic amplitudes with a “L-S” kernel (not exactly, but closely related)

Actually works pretty well with variational Monte Carlo Ψ even without Green’s
function Monte Carlo

Asymptotic normalizations (ANCs) computed this way from VMC agree well
with experiment



Cluster channel overlaps from VMC and L-S kernel

Points: Explicitly integrated Monte Carlo overlaps in VMC
.Solid curves: Overlaps from VMC Ψ & L-S kernel



ANCs from VMC wave functions

to

2.13

(full range to 2.0)

THEORY DIVIDED BY DATA

Small error bars are VMC statistics

Large ones are “experimental”

Sensitivity to wave function construction
seems weak but hard to quantify

A ≤ 4 clearly dominated by systematics,
also old

With a couple of exceptions, these are the
first ab initio ANCs in A > 4



Unbound amplitudes: S-, K- or T -matrix

Scattering amplitudes are direct analogues of bound-state ANCs

There are two amplitudes (incoming/outgoing or regular/irregular) in each channel

Ψ −→ AFl(kr)/r +BGl(kr)/r

That’s actually an advantage:

Observables depend on A/B, so Ψ error cancels at 1st order (Schwinger,
Kohn variational principles)

For “particle-in-box” methods, the L-S kernel should extract accurate off-diagonal
S-matrix elements from approximate Ψ

I have a student ramping up to application for coupled angular momentum
channels in 3H + n & 3He + p



Do we even want pure ab initio for astrophysics?

Ab initio reaction calculations probe NN & NNN interaction & computational
methods

Eventually they should predict some cross sections better than phenomenology

BUT high precision even in moderate-A systems needs fine tuning
(e.g.: placement of thresholds is important)

Everyone doing ab initio capture reactions does some tuning for that
(e.g.: SRG evolution set up for correct threshold with no NNN )

Some maximally consistent way is needed to pull together complementary ab
initio & empirical information



Halo EFT as a “fewer-body” framework

Halo effective field theory (EFT) can be used much like phenomenological R-
matrix but might connect more simply to ab initio constraints

Instead of ordinary quantum mechanics, you take each nucleus as a particle in
quantum field theory & develop a Lagrangian

You explicitly build in correct gauge, rotational, etc. symmetries

Lagrangian is expanded & truncated in terms of (k/Λ)n, where Λ is breakdown
scale (neglected threshold)

It’s “halo” EFT because it’s only useful for small binding energy – halo nuclei

Pursued by a few groups: Rupak & Higa; Hammer & Phillips; Ryberg, Forssén,
Hammer & Platter



Halo EFT of 7Be(p, γ)8B

Over a few papers, Xilin Zhang, Daniel Phillips & I developed an EFT of 7Be(p, γ)8B
at next-to-leading order (NLO) [cf. Ryberg et al., Rupak & Higa]

Key ingredients: Sum Coulomb at all orders & organize field theory renormalization
in terms of physical parameters

The renormalized theory is in terms of ANCs, scattering lengths, effective ranges

7Be(p, γ)8B S-factor calculation: (I) (II) (III) (IV)

(V) (VI) (VII)

(I)

FIG. 8: Diagrams for radiative capture to p-wave shallow bound state. The long dashed and short

dashed line are for core (c) and core excitation (d) fields. The first four diagrams ∼ V
1
2

(
V
VΛ

) 1
2

(LO),

the last three diagrams ∼ V
1
2

(
V
VΛ

) 3
2

(NLO). The radiative corrections would come in effectively

at N2LO.

We note that these values agree with the naive power couning, i.e., h(3P2) ∼ h(5P2) ∼ h(3P ∗
2 ),

r1 ∼ Λ, and a1 ∼ 1/ (Λγ2).

III. CAPTURE REACTION AMPLITUDE AND S FACTOR

The capture reaction is studied in detail in this section. Fig. 8 shows the relevant Feynman

diagrams up to NLO. The thin solid, dashed, and dotted lines denote proton, 7Be, and 7Be∗

fields; the open and filled box are for φ(1) (and φ(2)), and π fields. According to the power

counting of interaction vertices and propagators, the first four diagrams ∼ V
1
2

(
V
VΛ

) 1
2

are

LO, while the last three are NLO ∼ V
1
2

(
V
VΛ

) 3
2
. The 5th and 6th diagrams differ the 3rd and

4th by having 7Be∗ in the intermediate state insead of 7Be; the former coupling strength is

also suppressed by a factor of klow/Λ. The last diagram originates from the NLO contact

terms in the lagrangian,

Lc = eZeffL1π
†αT ij

α Eiφ(1)j + eZeffL2π
†αT iβ

α Eiφ(2)β + C.C. (40)

These terms are built based on Ref. [18] and in a similar way used in Ref. [5]. Its structure

is the same as expression (5), except the spin degrees of freedom. Its power counting can be

found in the toy model discussion (see Section I A), according to which L1,2 should scale as

1/Λ.

18

S(E) = f(E)
∑

s
C2
s

[ ∣∣∣SEC (E; δs(E)) + LsSSD (E; δs(E))

+εsSCX (E; δs(E))
∣∣∣
2

+ |DEC(E)|2
]



Halo EFT at next-to-leading order (NLO)

At NLO there are 9 parameters for 7Be(p, γ)8B

2 ANCs: Cs (s = 1,2)

2 short-distance couplings to the photon (like R-matrix internal capture): L̄s

1 coupling to excited 7Be (essentially an ANC): εs

2-term effective-range expansion in each s-wave channel, modeled as an unbound
“dimer” analogous to bound state: (as & rs – yields phase shifts δS)

S(E) = f(E)
∑

s
C2
s

[ ∣∣∣SEC (E; δs(E)) + LsSSD (E; δs(E))

+εsSCX (E; δs(E))
∣∣∣
2

+ |DEC(E)|2
]

The S & D matrix elements are very close to parts of Barker & Kajino R-matrix



Bayesian treatment of parameters

None of the 9 parameters are well-determined by data, but S(E < 500 keV) is

We computed Bayesian posterior probability of S(E) from capture data, with
scattering lengths & floating norms as Gaussian-distributed priors

We fitted at E < 500 keV to avoid resonances −→ (k/Λ)2 . 4% estimates
truncation error conservatively (marginalizes out to 0.2% on S(0))

We also tried experiment & ab initio ANC priors, but eventually left them outX. Zhang et al. / Physics Letters B 751 (2015) 535–540 537

All data are for energies above 0.1 MeV. We subtracted the 
M1 contribution of the 8B 1+ resonance from the data using the 
resonance parameters of Ref. [49] (a resonance energy of E p =
0.72 MeV and a width !p ≈ 0.036 MeV). This has negligible im-
pact (well below 1%) for E ≤ 0.5 MeV, so we retain only points in 
this region, thus eliminating the resonance’s effects. This strategy 
for dealing with the resonance has been applied, with a smaller 
upper energy for the fit, elsewhere in the literature [1,48,54].

4. Bayesian analysis

To extrapolate S(E) we must use these data to constrain the 
EFT parameters. We do this via Bayesian methods, which have 
been applied to the extraction of EFT parameters and the estima-
tion of EFT errors in Refs. [55–57]. Here we compute the poste-
rior probability distribution function (PDF) of the parameter vector 
g given data, D , our theory, T , and prior information, I . To ac-
count for the common-mode errors in the data we introduce data-
normalization corrections, ξi . We then employ Bayes’ theorem to 
write the desired PDF as:

pr (g, {ξi}|D; T ; I) = pr (D|g, {ξi}; T ; I)pr (g, {ξi}|I) , (3)

with the first factor proportional to the likelihood:

ln pr (D|g, {ξi}; T ; I) = c −
N∑

j=1

[
(1 − ξ j)S(g; E j) − D j

]2

2σ 2
j

,

where S(g; E j) is the NLO EFT S-factor at the energy E j of the jth 
data point D j , whose statistical uncertainty is σ j . The constant c
ensures pr (g, {ξi}|D; T ; I) is normalized. Since the CME affects all 
data from a particular experiment in a correlated way there are 
only five parameters ξi : one for each experiment.

In Eq. (3) pr (g, {ξi}, |I) is the prior for g and {ξi}. We choose 
independent Gaussian priors for each data set’s ξi , all centered at 0
and with width equal to the assigned CMEs. We also choose Gaus-
sian priors for the s-wave scattering lengths (a1,a2), with centers 
at the experimental values of Ref. [58], (25,−7) fm, and widths 
equal to their errors, (9,3) fm. All the other EFT parameters are 
assigned flat priors over ranges that correspond to, or exceed, val-
ues that are natural when expressed in units of the theory’s short-
distance scale: 0.001 ≤ C2

1,2 ≤ 1 fm−1, 0 ≤ r1,2 ≤ 10 fm [59,60], 
−1 ≤ ϵ1 ≤ 1, −10 ≤ L1,2 ≤ 10 fm. (For further discussion of the 
naturalness of these observable parameters, and of the related, but 
distinct, parameters in the Halo EFT Lagrangian, see Ref. [28].) We 
do, though, restrict the parameter space by the requirement that 
there is no s-wave resonance in 7Be-p scattering below 0.6 MeV.

To determine pr (g, {ξi}|D; T ; I), we use a Markov chain Monte 
Carlo algorithm [61] with Metropolis–Hastings sampling [62], gen-
erating 2 × 104 uncorrelated samples in the 14-dimensional (14d) 
g

⊕ {ξi} space. Making histograms, e.g., over two parameters 
g1 and g2, produces the marginalized distribution, in that case: 
pr (g1, g2|D; T ; I) =

∫
pr (g, {ξi}|D; T ; I) dξ1 . . .dξ5dg3 . . .dg9. Simi-

larly, to compute the PDF of a quantity F (g), e.g., S(E; g), we con-
struct pr

(
F̄ |D; T ; I

)
≡

∫
pr (g, {ξi}|D; T ; I) δ( F̄ − F (g))dξ1 . . .dξ5dg , 

and histogramming again suffices.

5. Constraints on parameters and the S-factor

The tightest parameter constraint we find is on the sum C2
1 +

C2
2 = 0.564(23) fm−1, which sets the overall scale of S(E).1 Fig. 1

1 The second moments of the MCMC sample distribution imply that C2
1 + 0.94C2

2
is best constrained, but we consider C2

1 + C2
2 for simplicity.

Fig. 1. (Color online.) 2d distribution for C2
1 (x-axis) and C2

2 (y-axis). Shading repre-
sents the 68% and 95% regions. The small and large ellipse are the 1σ contours of 
an ab initio calculation [63] and empirical results [64], with their best values marked 
as red squares. The inset is the histogram and the corresponding smoothed 1d PDF 
of the quantity [C2

1 + C2
2 ] × fm; the larger and smaller error bars show the empirical 

and ab initio values.

Fig. 2. (Color online.) 2d distribution for ϵ1 (x-axis) and L̄1 (y-axis). The shaded 
area is the 68% region. The inset is the histogram and corresponding smoothed 1d 
PDF of the quantity 0.33 ̄L1/fm − ϵ1.

shows contours of 68% and 95% probability for the 2d joint PDF 
of the ANCs. Neither ANC is strongly constrained by itself, but 
they are strongly anticorrelated; the 1d PDF of C2

1 + C2
2 is shown 

in the inset. The ellipses in Fig. 1 show ANCs from an ab initio
variational Monte Carlo calculation (the smaller ellipse) [63]2 and 
inferred from transfer reactions by Tabacaru et al. (larger ellipse) 
[64]. These are also shown as error bars in the inset. The ab initio
ANCs shown compare well with the present results. (The ab initio
ANCs of Ref. [10] sum to 0.509 fm−1 and appear to be in mod-
erate conflict.) Tabacaru et al. recognized that their result was 1σ
to 2σ below existing analyses of S-factor data; a 1.8σ conflict re-
mains in our analysis. We suggest that for 8B the combination of 
simpler reaction mechanism, fewer assumptions, and more precise 
cross sections makes the capture reaction a better probe of ANCs 
than transfer reactions.

Fig. 2 depicts the 2d distribution of L̄1 and ϵ1. There is a 
positive correlation: in S(E) below the 7Be-p inelastic threshold, 
the effect of core excitation, here parameterized by ϵ1, can be 
traded against the short-distance contribution to the spin-1 E1

2 We recomputed the sampling errors of Ref. [63] in the basis of good s, taking 
more careful account of correlations between ANCs.
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All data are for energies above 0.1 MeV. We subtracted the 
M1 contribution of the 8B 1+ resonance from the data using the 
resonance parameters of Ref. [49] (a resonance energy of E p =
0.72 MeV and a width !p ≈ 0.036 MeV). This has negligible im-
pact (well below 1%) for E ≤ 0.5 MeV, so we retain only points in 
this region, thus eliminating the resonance’s effects. This strategy 
for dealing with the resonance has been applied, with a smaller 
upper energy for the fit, elsewhere in the literature [1,48,54].

4. Bayesian analysis
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EFT parameters. We do this via Bayesian methods, which have 
been applied to the extraction of EFT parameters and the estima-
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where S(g; E j) is the NLO EFT S-factor at the energy E j of the jth 
data point D j , whose statistical uncertainty is σ j . The constant c
ensures pr (g, {ξi}|D; T ; I) is normalized. Since the CME affects all 
data from a particular experiment in a correlated way there are 
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In Eq. (3) pr (g, {ξi}, |I) is the prior for g and {ξi}. We choose 
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at the experimental values of Ref. [58], (25,−7) fm, and widths 
equal to their errors, (9,3) fm. All the other EFT parameters are 
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naturalness of these observable parameters, and of the related, but 
distinct, parameters in the Halo EFT Lagrangian, see Ref. [28].) We 
do, though, restrict the parameter space by the requirement that 
there is no s-wave resonance in 7Be-p scattering below 0.6 MeV.

To determine pr (g, {ξi}|D; T ; I), we use a Markov chain Monte 
Carlo algorithm [61] with Metropolis–Hastings sampling [62], gen-
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g
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The tightest parameter constraint we find is on the sum C2
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Fig. 1. (Color online.) 2d distribution for C2
1 (x-axis) and C2

2 (y-axis). Shading repre-
sents the 68% and 95% regions. The small and large ellipse are the 1σ contours of 
an ab initio calculation [63] and empirical results [64], with their best values marked 
as red squares. The inset is the histogram and the corresponding smoothed 1d PDF 
of the quantity [C2
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Fig. 2. (Color online.) 2d distribution for ϵ1 (x-axis) and L̄1 (y-axis). The shaded 
area is the 68% region. The inset is the histogram and corresponding smoothed 1d 
PDF of the quantity 0.33 ̄L1/fm − ϵ1.

shows contours of 68% and 95% probability for the 2d joint PDF 
of the ANCs. Neither ANC is strongly constrained by itself, but 
they are strongly anticorrelated; the 1d PDF of C2

1 + C2
2 is shown 

in the inset. The ellipses in Fig. 1 show ANCs from an ab initio
variational Monte Carlo calculation (the smaller ellipse) [63]2 and 
inferred from transfer reactions by Tabacaru et al. (larger ellipse) 
[64]. These are also shown as error bars in the inset. The ab initio
ANCs shown compare well with the present results. (The ab initio
ANCs of Ref. [10] sum to 0.509 fm−1 and appear to be in mod-
erate conflict.) Tabacaru et al. recognized that their result was 1σ
to 2σ below existing analyses of S-factor data; a 1.8σ conflict re-
mains in our analysis. We suggest that for 8B the combination of 
simpler reaction mechanism, fewer assumptions, and more precise 
cross sections makes the capture reaction a better probe of ANCs 
than transfer reactions.

Fig. 2 depicts the 2d distribution of L̄1 and ϵ1. There is a 
positive correlation: in S(E) below the 7Be-p inelastic threshold, 
the effect of core excitation, here parameterized by ϵ1, can be 
traded against the short-distance contribution to the spin-1 E1

2 We recomputed the sampling errors of Ref. [63] in the basis of good s, taking 
more careful account of correlations between ANCs.

Zhang, Nollett, Phillips, PLB 751, 535 (2015)



What we really want for 7Be(p, γ)8B is S(0) or S(20 keV)

Marginalizing over all parameters, we find S(0) = 21.3± 0.7 eV b

Solar Fusion II recommends S(0) = 20.8± 0.7 (ex)± 1.4 (th) eV b

Navrátil et al. compute S(0) = 19.4± 0.7 eV b ab initio, error from truncation

538 X. Zhang et al. / Physics Letters B 751 (2015) 535–540

Table 1
A representative EFT parameter set that gives a curve almost on the top of the median value curve (solid blue) in Fig. 3. The LO curve (dashed black) uses the LO parameters 
listed here, with the strictly NLO parameters set to zero. Because the parameter space is very degenerate, many such parameter sets could be given that have similar S(E)

curves but very different parameter values.

C2
1 (fm−1) a1 (fm) r1 (fm) ϵ1 L1 (fm) C2

2 (fm−1) a2 (fm) r2 (fm) L2 (fm)

0.2336 24.44 3.774 −0.04022 1.641 0.3269 −7.680 3.713 0.1612

Fig. 3. (Color online.) The right panel shows the NLO S-factor (y-axis) at different 
energies (x-axis), including the median values (solid blue curve). Shading indicates 
the 68% interval. The dashed line is the LO result. The data used for parameter 
determination together with a few above 0.5 MeV are shown, but have not been 
rescaled in accord with our fitted {ξi}. They are: Junghans et al., BE1 and BE3 [48]
(filled black circle and filled grey circle), Filippone et al. [49] (open circle), Baby 
et al. [50,51] (filled purple diamond), and Hammache et al. [52,53] (filled red box). 
The left panel shows 1d PDFs for S(0) (blue line and histogram) and S(20 keV)

(red-dashed line). In this case the y-axis is S(0) or S(20 keV), while the PDFs 
shown along the x-axis are normalized to unit total probability.

Table 2
The median values of S , S ′/S , and S ′′/S at E = 0 keV [E = 20 keV], as well as the 
upper and lower limits of the (asymmetric) 68% interval. The sampling errors are 
0.02%, 0.07%, 0.01% for median values, as estimated from 〈X2 − ⟨X⟩2〉1/2

/
√

N with 
N = 2 × 104.

S (eV b) S ′/S (MeV−1) S ′′/S (MeV−2)

Median 21.33 [20.67] −1.82 [−1.34] 31.96 [22.30]
+σ 0.66 [0.60] 0.12 [0.12] 0.33 [0.34]
−σ 0.69 [0.63] 0.12 [0.12] 0.37 [0.38]

matrix element. The inset shows the 1d distribution of the quan-
tity 0.33 ̄L1/fm−ϵ1, for which there is a slight signal of a non-zero 
value. In contrast, the data prefers a positive L̄2: its 1d pdf [65]
yields a 68% interval −0.58 fm < L̄2 < 7.94 fm.

We now compute the PDF of S at many energies, and extract 
each median value (the thin solid blue line in Fig. 3), and 68% 
interval (shaded region in Fig. 3). The PDFs for S at E = 0 and 
20 keV are singled out and shown on the left of the figure: the 
blue line and histogram are for E = 0 and the red-dashed line is 
for E = 20 keV. We found choices of the EFT-parameter vector g
(listed in Table 1) that correspond to natural coefficients, produce 
curves close to the median S(E) curve of Fig. 3, and have large 
values of the posterior probability.

6. S(20 keV) and the thermal reaction rate

Table 2 compiles median values and 68% intervals for the 
S-factor and its first two derivatives, S ′/S and S ′′/S , at E = 0
and 20 keV. Ref. [1] recommends S(0) = 20.8 ± 1.6 eV b (quadra-
ture sum of theory and experimental uncertainties). Our S(0) is 
consistent with this, but the uncertainty is more than a factor 

Table 3
The median values and 68% interval bounds for S in the energy range from 0 to 
0.5 MeV. At each energy point, the histogram of S is drawn from the Monte-Carlo 
simulated ensemble and then is used to compute the median and the bounds.

E (MeV) Median (eV b) −σ (eV b) +σ (eV b)

0. 21.33 0.69 0.66
0.01 20.97 0.65 0.63
0.02 20.67 0.63 0.60
0.03 20.42 0.60 0.58
0.04 20.20 0.57 0.55
0.05 20.02 0.55 0.53
0.1 19.46 0.45 0.44
0.2 19.27 0.34 0.34
0.3 19.65 0.32 0.30
0.4 20.32 0.35 0.31
0.5 21.16 0.42 0.41

of two smaller. Ref. [1] also provides effective values of S ′/S =
−1.5 ± 0.1 MeV−1 and S ′′/S = 11 ± 4 MeV−2. These are not literal 
derivatives but results of quadratic fits to several plausible models 
over 0 < E < 50 keV, useful for applications. Our values are consis-
tent, considering the large higher derivatives (rapidly changing S ′′) 
left out of quadratic fits.

In Table 3, we list the median values and 68% interval bounds 
for S in 10 keV intervals to 50 keV and then in 100 keV intervals 
to 500 keV.

The important quantity for astrophysics is in fact not S(E) but 
the thermal reaction rate; derivatives of S(E) are used mainly in a 
customary approximation to the rate integral [1,2,66]. By using our 
S ′ and S ′′ in a Taylor series for S(E) about 20 keV, then regrouping 
terms and applying the approximation formula, we get

N A⟨σ v⟩ = 2.7648 × 105

T 2/3
9

exp

(
−10.26256

T 1/3
9

)

× (1 + 0.0406T 1/3
9 − 0.5099T 2/3

9 − 0.1449T9

+ 0.9397T 4/3
9 + 0.6791T 5/3

9 ), (4)

in units of cm3 s−1 mol−1, where N A is Avogadro’s number and 
T9 ≡ T /(109 K). Up to T9 = 0.6, the lower and upper limits of the 
68% interval for S(E) produce a numerically integrated rate that is 
0.969(1 +0.0576T9 −0.0593T 2

9 ) and 1.030(1 −0.05T9 +0.0511T 2
9 )

times that of Eq. (4). At T9 ! 0.7 energies beyond the LER, and 
hence resonances, come into play and so these results no longer 
hold. We know of no astrophysical environment with such high T9
where 7Be(p, γ )8B matters.

We also check this approximation against direct numerical in-
tegration of our median S(E): the two differ by only 0.01% at tem-
perature T9 = 0.016 (characteristic of the Sun), and 1% at T9 = 0.1
(relevant for novae).

7. How accurate is NLO?

Our improved precision for S(0) is achieved because, by appro-
priate choices of its nine parameters, NLO Halo EFT can represent 
all the models whose disagreement constitutes the 1.4 eV b uncer-
tainty quoted in Ref. [1]—including the microscopic calculation of 
Ref. [9]. Halo EFT matches their S(E) and phase-shift curves with 
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Full histogram: S(0)

Dashed histogram: S(20 keV)

Green band: Marginalized S(E)

Solid curve: Parameters matching band
median

Dashed curve: Keeping only LO
parameters from solid curve



Some thoughts on the future

7Be(p, γ)8B experience suggests a path toward smart use of ab initio information:

Construct a “fewer-body” model like R-matrix, Woods-Saxon, or halo EFT

Compute some of its parameters ab initio & use those and e.g. threshold energies
as Bayesian priors

Then use MCMC to estimate the extrapolated cross section you care about
from reaction data

Ab initio methods should eventually provide priors on more parameters than
just ANCs



Down the road a bit

Lippmann-Schwinger & similar techniques may provide a natural path that links
ab initio calculations consistently with multiple EFT parameters

Even purely ab initio models will be more efficient & useful if they can produce
honest parameters for fewer-body halo EFT, R-matrix, or potential models

By “honest,” I mean no hand-waving, actually one-to-one between the models

Specifically for halo EFT:

We’re working on Bayesian 3He(α, γ)7Be now – nearly same structure, different
data & separation energies [differently-organized EFT by Higa et al.]

At least for setting priors, we need a better approach to Pauli-principle constraints
that impose nodes on channel overlaps



BONUS MATERIAL



Testing out the L-S estimates of Γ

The integral estimate should apply to states that are in some sense narrow

I’ve chosen low-lying states in A ≤ 9 with mainly/purely nucleon decays

Red: overlaps inconsistent with
resonance

Asterisk: uncomputed channels

Dynamic range of 0.0005 to
. 1.0 MeV, not otherwise
possible for QMC

Turned out about as accurate as it
has any right to be



Short range of the kernel: 3He → dp asymptotic normalizations (ANCs)

s-wave ANC integrand & integral d-wave ANC integrand & integral

Points are Monte-Carlo sampled integrand; solid curves are cumulative integrals

For 3He→ dp, we haveCdps = 2.131(8) fm−1/2 ,Cdpd = −0.0885(7) fm−1/2

ANCs converge just where sampling gets sparse in the explicit overlap


