

Combined Measurement of the CP Violating Angle β by the BaBar and Belle Experiments

Tomo Miyashita

Caltech

On Behalf of the BaBar Collaboration

CIPANP 2018

Palm Springs, CA May 30th, 2018

CP Violation in the Standard Model

• Within the Standard Model (SM), *CP* violation is accounted for by a single weak phase in the Cabibbo-Kobayashi-Maskawa (CKM) quark mixing matrix:

$$V = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix}$$

The CKM Matrix

- CKM matrix describes weak coupling constants between quarks
- Under the Wolfenstein parameterization, we approximate the CKM matrix as:

Neutral B Meson Mixing Diagram

$$V_{\text{CKM}} = \begin{pmatrix} 1 - \lambda^2/2 & \lambda & A\lambda^3(\rho - i\eta) \\ -\lambda & 1 - \lambda^2/2 & A\lambda^2 \\ A\lambda^3(1 - \rho - i\eta) & -A\lambda^2 & 1 \end{pmatrix} + \mathcal{O}(\lambda^4)$$

where $\lambda \approx 0.22$ and $A \approx 0.83$

We have *CP* violation if $\eta \neq 0$

CP Violation in the Standard Model

- Unitarity of the CKM matrix $(V^{\dagger}V = I)$ leads to 6 independent constraints on sums of cross-terms $(V_{q_1q_2}V_{q_3q_4}^*)$
- These constraints can be represented as triangles in the complex plane
- All but two are severely elongated:

$$V_{td}V_{ud}^* + V_{ts}V_{us}^* + V_{tb}V_{ub}^* = 0$$

$$V_{ud}V_{ub}^* + V_{cd}V_{cb}^* + V_{td}V_{tb}^* = 0$$

• The second of these relates to quark transitions involved in B_d mixing

Neutral B Meson Mixing Diagram

The Unitarity triangle

• Dividing each side of the triangle by the best-known one $(V_{cd}V_{cb}^*)$, we get:

• By measuring 3 angles and 2 sides, one can overconstrain the apex of the unitarity triangle

Unitarity Triangle Constraints

Constraints on the Unitarity Triangle

Measuring β

- Traditionally, time-dependent *CP* violation measurements in the "golden mode" $B^0 \to J/\psi K_S^0$ and other decays mediated by $b \to \bar{c}c\bar{s}$ transitions have been used to extract $\sin 2\beta$ and thus β
- However, measurements of $\sin 2\beta$ suffer from a trigonometric 2-fold ambiguity between 2β and $\pi 2\beta$:

- This ambiguity can be resolved by measuring $\cos 2\beta$
- So far, there has been no conclusive determination of the sign of $\cos 2\beta$ (Previous measurements had large uncertainties)

The B Factories

This analysis was performed using data collected by both the BaBar and Belle experiments

Designed as "B factories" operating primarily at the $\Upsilon(4S)$ resonance $(\sqrt{s} \approx 10.58 \text{ GeV/}c^2)$

• 1.24 billion $B\bar{B}$ pairs recorded

The B Factories - Luminosity

• Integrated Luminosity of the *B* Factories:

Also operated at other Υ resonances as well as "Off resonance" ($\approx 40 \text{ MeV}/c^2$ below the $\Upsilon(4S)$)

The B Factories - Boost

- A key feature of the *B* factories is that they used asymmetric energy electron and positron beams
 - 9 GeV electrons and 3.1 GeV positrons at BaBar
 - 8 GeV electrons and 3.5 GeV positrons at Belle

The PEP — II Storage Rings at SLAC

• The asymmetric energy beams caused the e^+e^- CM to be boosted in the lab frame

• $\beta \gamma \approx 0.56$ at BaBar and $\beta \gamma \approx 0.43$ at Belle

The B Factories – Measuring Δt

- Due to the boost, the distance between the B decay vertices can be used to calculate the time between B and \overline{B} decays
- Fully reconstruct the decay of one B meson (B_{rec}^0) and use the decay of the other B meson (B_{tag}^0) to determine its flavor
 - The *B* mesons are produced as entangled pairs and evolve coherently, so at the moment the first *B* decays, the other *B* is the opposite flavor
 - Define $\Delta t \equiv t_{\rm rec} t_{\rm tag}$ as the time between the decays of the two mesons (based on their separation Δz along the boost direction)

Time-Dependent DP Analysis

- We use a time-dependent Dalitz Plot analysis to extract both $\sin 2\beta$ and $\cos 2\beta$
 - Signal mode is $B^0 \to D^{(*)}h^0$ where $D^0 \to K_S^0\pi^+\pi^-$
- Our signal decay rate is proportional to: $\frac{e^{\frac{-|\Delta t|}{\tau_{B^0}}}}{2} \Big\{ \left[|\mathcal{A}_{\overline{D}^0}|^2 + |\mathcal{A}_{D^0}|^2 \right]$ $-q\left(|\mathcal{A}_{\overline{D}^0}|^2-|\mathcal{A}_{D^0}|^2\right)\cos(\Delta m_d \Delta t)$ $+2q\eta_{h^0}(-1)^L \operatorname{Im}\left(e^{-2i\beta}\mathcal{A}_{D^0}\mathcal{A}_{\overline{D}^0}^*\right) \sin(\Delta m_d \Delta t)$

where the β -dependence in the last term can be rewritten as:

$$\operatorname{Im}\left(e^{-2i\beta}\mathcal{A}_{D^{0}}\mathcal{A}_{\bar{D}^{0}}^{*}\right) = \operatorname{Im}\left(\mathcal{A}_{D^{0}}\mathcal{A}_{\bar{D}^{0}}^{*}\right) \left[\cos(2\beta)\right] - \operatorname{Re}\left(\mathcal{A}_{D^{0}}\mathcal{A}_{\bar{D}^{0}}^{*}\right) \sin(2\beta)$$

The interference between D^0 and \overline{D}^0 and the variations across the DP allow the extraction of the *CP*-violating weak phase 2β

$$|M_{B^0}(\Delta t)|^2 = \left| \times \cos(\Delta m \Delta t/2) - ie^{+2i\beta} \times \left| \times \sin(\Delta m \Delta t/2) \right|^2$$

$$|M_{\bar{B}^0}(\Delta t)|^2 = \left| \times \cos(\Delta m \Delta t/2) - ie^{-2i\beta} \times \left| \times \sin(\Delta m \Delta t/2) \right|^2$$

Dalitz Plot Parameterization

- The kinematics of a spin-0 particle decaying into three spin-0 particles are fully described by two parameters
 - Typically, we use the squared invariant masses of two pairs of final state particles
 - This allows easy determination of intermediate state masses, and phase space decays are uniform in these variables
 - Parameterization referred to as "Dalitz Plot" (DP)

THE STITUTE OF STITUTE

Analysis Steps

• (1) Perform a 2D fit to Belle $c\bar{c}$ data to obtain yields for the signal and background categories

• (2) Extract the $D^0 \to K_S^0 \pi^+ \pi^-$ Dalitz model from the high-statistics Belle $c\bar{c}$ data

• (3) Perform a 3D fit to $B^0 \to D^{(*)}h^0$ events to extract yields for the signal and background categories

• (4) Perform the final time-dependent Dalitz plot fit to $B^0 \to D^{(*)}h^0$ events, using the $D^0 \to K_S^0 \pi^+ \pi^-$ Dalitz plot model obtained earlier

$D^{*+} \rightarrow D^0 \pi_s^+$ Yield Extraction

- We perform time-integrated analysis of the Belle $c\bar{c}$ data to extract sig+bkg yields for the DP model fit
- Signal (CAT 1) is correctly reconstructed $D^{*+} \to D^0 \pi_S^+$ with $D^0 \to K_S^0 \pi^+ \pi^-$ decays
- Background is divided into 4 categories:
 - CAT 2: True *D*, random soft pion
 - CAT 3: $D^0 \rightarrow K_S^0 K_S^0$ and 4π
 - CAT 4: True π_s^+ mesons, but incorrect D
 - CAT 5: Remaining combinatorial bkg.
- We extract the yields in a 2D unbinned maximum likelihood fit to the M_{D^0} vs. ΔM (the $D^{*+} D^0$ mass difference)

Component	Yield	
Category 1: Signal	1217329 ± 2015	
Category 2: True D , random soft pion	61330 ± 1282	
Category 3: $D^0 \to K_S^0 K_S^0$ and 4π	3438 (fixed to MC expectation)	
Category 4: True π_s^+ mesons, but incorrect D	249701 ± 10017	
Category 5: Remaining combinatorial bkg.	270990 ± 9077	

$D^0 \to K_S^0 \pi^+ \pi^-$ Dalitz Model Extraction

- In order to measure $\cos 2\beta$ using $B^0 \to D^{(*)}h^0$ decays, the Dalitz model of the *D* decay needs to be known
 - Extract the $D^0 \to K_S^0 \pi^+ \pi^-$ Dalitz model from Belle $c\bar{c}$ data
 - With 924 fb⁻¹ of Belle data collected at or near the $\Upsilon(4S)$ and $\Upsilon(5S)$ resonances, we do not need to include BaBar data for this part of the analysis
- Decay Amplitude Parameterization:

$$\mathcal{A}(M_{K_S^0\pi^-}^2, M_{K_S^0\pi^+}^2) = \sum_{r \neq (K\pi/\pi\pi)_{L=0}} a_r e^{i\phi_r} \mathcal{A}_r(M_{K_S^0\pi^-}^2, M_{K_S^0\pi^+}^2) + F_1(M_{\pi^+\pi^-}^2) + \mathcal{A}_{K\pi_{L=0}}(M_{K_S^0\pi^-}^2) + \mathcal{A}_{K\pi_{L=0}}(M_{K_S^0\pi^+}^2)$$

Quasi 2 – Body Resonances $\pi\pi$ S – Wave $K\pi$ S – Wave + K_0^* (1430) (Relativistic Breit – Wigner) (K Matrix) (LASS Parameterization)

- Intermediate resonances:
 - Cabibbo-favored: $K^*(892)^-$, $K_2^*(1430)^-$, $K^*(1680)^-$, $K^*(1410)^-$
 - Cabibbo-suppressed: $K^*(892)^+$, $K_2^*(1430)^+$, $K^*(1410)^+$
 - CP eigenstates: $\rho(770)^0$, $\omega(782)$, $f_2(1270)$, $\rho(1450)^0$

$D^0 \to K_S^0 \pi^+ \pi^-$ Dalitz Plot Fit Projections

THE STITLE OF WASHINGTON

$B^0 \to D^{(*)0} h^0$ Yield Extraction

- Before performing the final time-dependent CP analysis using $B^0 \to D^{(*)0}h^0$ decays, we must also extract signal and background yields for these modes
 - The specific modes we reconstruct are: $D^0\pi^0$, $D^0\eta$, $D^0\omega$, $D^{*0}\pi^0$, $D^{*0}\eta$
 - Similar selection criteria are used for the BaBar and Belle data
- We use a neural network (NN) combining event-shape variables to reject continuum $e^+e^- \rightarrow q\bar{q}$
- Yields are extracted in 3-dimensional maximum likelihood fits to:
 - Modified beam-energy constrained mass (M'_{bc}) :

$$M_{\rm bc}' = \sqrt{E_{\rm beam}^{*2} - \left[\vec{p}_{D(*)}^* + \hat{p}_{h^0}^* \sqrt{(E_{\rm beam}^* - E_{D(*)}^*)^2 - M_{h^0}^2}\right]^2}$$

lacksquare ΔE

$$\Delta E = E_B^* - E_{\text{beam}}^*$$

Neural Network Output (NN_{out})

Signal-Like Event Shape

Continuum Event Shape

$B^0 \to D^{(*)0} h^0$ Yield Fit Results

	Yield BABAR	Yield Belle
$B^0 \to \bar{D}^0 \pi^0$	469 ± 31	768 ± 37
$B^0 \to \bar{D}^0 \eta$	220 ± 22	238 ± 23
$B^0 \to \bar{D}^0 \omega$	219 ± 21	285 ± 26
$B^0\to \bar D^{*0}\pi^0$	147 ± 18	182 ± 19
$B^0 o \bar{D}^{*0} \eta$	74 ± 11	94 ± 13
All above $B^0 \to \bar{D}^{(*)0} h^0$ modes	1129 ± 48	1567 ± 56

$B^0 \to D^{(*)0} h^0$ Time-Dependent Fit

- Finally, we perform a time-dependent fit to $B^0 \to D^{(*)0} h^0$ events where $D^0 \to K_S^0 \pi^+ \pi^-$ in order to simultaneously extract $\sin 2\beta$ and $\cos 2\beta$
- Our final likelihood is a combination of BaBar and Belle likelihoods:

$$\ln P = \sum_{i} \ln P_{i}^{\text{BaBar}} + \sum_{i} \ln P_{i}^{\text{Belle}}$$

- We use a common Dalitz plot model for BaBar and Belle data and fit to the Δt distributions
 - The signal decay rate is proportional to:

$$\frac{e^{\frac{-|\Delta t|}{\tau_{B^0}}}}{2} \left\{ \left[|\mathcal{A}_{\overline{D}^0}|^2 + |\mathcal{A}_{D^0}|^2 \right] - q \left(|\mathcal{A}_{\overline{D}^0}|^2 - |\mathcal{A}_{D^0}|^2 \right) \cos(\Delta m_d \Delta t) + 2q\eta_{h^0} \left(-1 \right)^L \operatorname{Im} \left(e^{-2i\beta} \mathcal{A}_{D^0} \mathcal{A}_{\overline{D}^0}^* \right) \sin(\Delta m_d \Delta t) \right\}$$

where
$$\operatorname{Im}\left(e^{-2i\beta}\mathcal{A}_{D^0}\mathcal{A}_{\bar{D}^0}^*\right) = \operatorname{Im}\left(\mathcal{A}_{D^0}\mathcal{A}_{\bar{D}^0}^*\right)\cos(2\beta) - \operatorname{Re}\left(\mathcal{A}_{D^0}\mathcal{A}_{\bar{D}^0}^*\right)\sin(2\beta)$$

We use separate resolution models and flavor-tagging algorithms for BaBar and Belle

Final Fit Results I

• Region A:

- Predominantly populated by *CP* eigenstates
- Interference between direct decays of neutral *B* mesons, and mixing followed by decays
- Sinusoidal oscillation in CP asymmetry reflects mixing-induced CP violation governed by weak phase β

• Region B:

- Predominantly populated by quasiflavor-specific decays
- Time evolution exhibits $B^0 \bar{B}^0$ oscillations governed by the oscillation frequency, Δm_d

BaBar+Belle Δt fits in two regions of the D^0 $\to K_S^0 \pi^+ \pi^-$ phase space

Final Fit Results II

Final Fit Results

World Average:
$$\sin 2\beta = 0.69 \pm 0.02$$

$$\sin 2\beta = 0.80 \pm 0.14 \text{ (stat.)} \pm 0.06 \text{ (syst.)} \pm 0.03 \text{ (model)}$$

 $\cos 2\beta = 0.91 \pm 0.22 \text{ (stat.)} \pm 0.09 \text{ (syst.)} \pm 0.07 \text{ (model)}$
 $\beta = (22.5 \pm 4.4 \text{ (stat.)} \pm 1.2 \text{ (syst.)} \pm 0.6 \text{ (model)})^{\circ}$

- Most precise measurement of $\cos 2\beta$
- First evidence for $\cos 2\beta > 0$ (3.7 σ)
 - We exclude the second solution $(\pi/2 \beta = (68.1 \pm 0.7)^{\circ})$ at 7.3σ significance, resolving the ambiguity in the apex of the CKM Unitarity Triangle
 - We exclude $\beta = 0$ at 5.1σ , and thus observe *CP* violation in $B^0 \to D^{(*)}h^0$

Result Comparison

TO COUNTY OF THE PARTY OF THE P

Summary

• We have combined the final BaBar and Belle data samples (an integrated luminosity of more than 1 ab^{-1} collected at the $\Upsilon(4S)$ resonance) and performed a time-dependent Dalitz plot analysis of $B^0 \to D^{(*)}h^0$ with $D \to K_S^0 \pi^+ \pi^-$ decays

• We report the world's most precise measurement of $\cos 2\beta$

• We obtain the first evidence for $\cos 2\beta > 0$ and exclude the trigonometric multifold solution at 7.3σ significance

Papers have been submitted to PRL and PRD

arXiv:1804.06152 [hep-ex]

<u>arXiv:1804.06153 [hep-ex]</u>

