

The Mu2e Experiment

Tomo Miyashita

Caltech

On Behalf of the Mu2e Collaboration

CIPANP 2018

Palm Springs, CA May 29th, 2018

Overview

- Motivation and Theory
- Experiment Overview
- Experiment Design
 - Proton Beam
 - Production and Stopping Targets
 - Tracker
 - Calorimeter
 - CRV
 - DAQ/Trigger
- Mu2e Schedule
- Mu2e II
- Summary

Motivation

- Mu2e is searching for Charged Lepton Flavor Violation (CLFV)
 - Specifically, the conversion of a μ^- to an e^- in the field of a nucleus:

$$\mu^{-} + A(Z, N) \to e^{-} + A(Z, N)$$

• Using the current Fermilab accelerator complex, we intend to achieve a sensitivity 4 orders of magnitude better than current limits:

Target Sensitivity:

$$R_{\mu e} = \frac{\Gamma\left[\mu^- + A(Z,N) \to e^- + A(Z,N)\right]}{\Gamma\left[\mu^- + A(Z,N) \to \nu_\mu + A(Z-1,N+1)\right]} < 6.7 \times 10^{-17} (90\% \text{CL})$$

4 orders of magnitude better than current limits: SINDRUM II [W. Bertl et al., Eur. Phys. J. C 47, 337-346 (2006)]

• We will have discovery sensitivity over a broad range of New Physics parameter space

Flavor Violation

- We have known for a long time that quarks mix \Rightarrow (Quark) Flavor Violation
 - Mixing strengths parameterized by the CKM matrix

- We have known since 2001 that neutrinos can also mix ⇒ (Neutral) Lepton Flavor Violation
 - Mixing strengths parameterized by the PMNS matrix

- Why not charged leptons as well?
 - Charged Lepton Flavor Violation (CLFV)

CLFV in the Standard Model

- CLFV is not technically allowed in the SM because since charged lepton number is accidentally conserved when neutrinos are massless
- However, if we include massive neutrinos in our model then CLFV becomes possible at the loop level due to neutrino oscillations:

- This process is extremely suppressed $(\mathcal{B}(\mu^- \to e^- \gamma) < 10^{-54})$
- Therefore, any signal at our sensitivity would be a sign of new physics

Example CLFV Processes

• Potential channels for CLFV searches:

Process	Current Limit	Next Generation exp		
$\tau \rightarrow \mu \eta$	BR $< 6.5 \times 10^{-8}$			
$\tau \rightarrow \mu \gamma$	BR $< 6.8 \times 10^{-8}$	10 ⁻⁹ - 10 ⁻¹⁰ (Belle II)		
$\tau \rightarrow \mu \mu \mu$	BR < 3.2 x 10 ⁻⁸			
$\tau \rightarrow eee$	BR $< 3.6 \times 10^{-8}$			
$K_{L} \to e\mu$	BR < 4.7 x 10 ⁻¹²			
$K^+ o \pi^+ e^- \mu^+$	BR $< 1.3 \times 10^{-11}$			
$B^0 \to e \mu$	BR $< 7.8 \times 10^{-8}$			
$B^+ \to K^+ e \mu$	BR < 9.1 x 10 ⁻⁸			
$\mu^+ \rightarrow e^+ \gamma$	BR $< 4.2 \times x \cdot 10^{-13}$	10 ⁻¹⁴ (MEG Upgrade)		
$\mu^+ \rightarrow e^+ e^+ e^-$	BR < 1.0 x 10 ⁻¹²	10 ⁻¹⁶ (Mu3e)		
$\mu N \rightarrow eN$	$R_{\mu e} < 7.0 \times 10^{-13}$	10 ⁻¹⁷ (Mu2e, COMET)		

• Although CLFV τ processes could have larger branching ratios than μ processes, dedicated muon experiments can produces $O(10^{10})~\mu/s$ whereas colliders produce $O(10^{10})~\tau/year$

6

New Physics Reach

- There are many possible new physics contributions to $\mu N \rightarrow eN$, either through loops or the exchange of heavy intermediate particles
 - Many NP models predict rates observable at next gen CLFV experiments

Loops

Supersymmetry

Heavy Neutrinos

Two Higgs Doublets

Contact Terms

New Heavy Bosons / Anomalous Couplings

Model-Independent Effective Lagrangian

$$L_{\text{CLFV}} = \frac{m_m}{(1+k)\Lambda^2} \overline{m}_R s_m e_L F^{mn} + \frac{k}{(1+k)\Lambda^2} \overline{m}_L g_m e_L (\overline{u}_L g_m u_L + \overline{d}_L g_m d_L) + h.c.$$

 Λ : effective mass scale of New Physics

k: relative contribution of the contact term

Contact

dominated

K

Loop

dominated

TeV)

"Contact term"

No contribution

to $\mu \rightarrow e \gamma$

Motivation II

Mu2e has discovery sensitivity across a wide range of models:

W. Altmannshofer, A.J.Buras, S.Gori, P.Paradisi, D.M.Straub

<u>.=</u>
-
9
Φ
S
Φ
Ó
$\ddot{\circ}$
$\widetilde{\mathbf{S}}$
. 07
Ш

	AC	RVV2	AKM	δ LL	FBMSSM	LHT	RS
$D^0 - \bar{D}^0$	***	*	*	*	*	***	?
ϵ_K	*	***	***	*	*	**	***
$S_{\psi\phi}$	***	***	***	*	*	***	***
$S_{\phi K_S}$	***	**	*	***	***	*	?
$A_{\mathrm{CP}}\left(B o X_s\gamma ight)$	*	*	*	***	***	*	?
$A_{7,8}(B o K^*\mu^+\mu^-)$	*	*	*	***	***	**	?
$A_9(B o K^*\mu^+\mu^-)$	*	*	*	*	*	*	?
$B \to K^{(\star)} \nu \bar{\nu}$	*	*	*	*	*	*	*
$B_s o \mu^+ \mu^-$	***	***	***	***	***	*	*
$K^+ o \pi^+ u ar{ u}$	*	*	*	*	*	***	***
$K_L o \pi^0 u \bar{ u}$	*	*	*	*	*	***	***
$\mu \to e \gamma$	***	***	***	***	***	***	***
$\tau \to \mu \gamma$	***	***	*	***	***	***	***
$\mu + N \rightarrow e + N$	***	***	***	***	***	***	***
d_n	***	***	***	**	***	*	***
d_e	***	***	**	*	***	*	***
$(g-2)_{\mu}$	***	***	**	***	***	*	?

Table 8: "DNA" of flavour physics effects for the most interesting observables in a selection of SUSY and non-SUSY models ★★★ signals large effects, ★★ visible but small effects and ★ implies that the given model does not predict sizable effects in that observable.

arXiv:0909.1333[hep-ph]

Experimental Concept

- Generate a beam of low momentum muons
 - Muons are stopped in an aluminum target
 - When stopped muons convert to electrons, the nucleus recoils and the electron is emitted at a specific energy $E_e = m_{\mu} N_{recoil} (B.E.)_{1S}$

- Signal is mono-energetic electron at 104.9 MeV
 - Main background is Decay In Orbit (DIO) events

- To achieve our target sensitivity, we need $\sim 10^{18}$ stopped muons over 3 year run
 - $=> \sim 10^{10}$ stopped muons per second

Decay In Orbit

Decay In Orbit Energy Distribution

• Although naively, the maximum electron energy from muon decay should be far below our signal energy (104.9 MeV)...

Decay In Orbit Energy Distribution

Once you include the effect of the μ -Al²⁷ binding energy and radiative corrections...

Decay In Orbit Energy Distribution

The maximum energy for the DIO electrons comes very close to the signal energy:

• Therefore, it is important that we have good energy resolution

Design Overview

- Production Target + Production Solenoid
 - High intensity, pulsed, 8 GeV proton beam strikes tungsten production target producing pions
 - Pions are captured by the graded magnetic field and decay to muons
- Transport Solenoid
 - Selects low momentum, negative muons
 - Absorbers and Collimators eliminate high energy negative particles, positive particles, and line-of-sight neutrals
- Stopping Target, Detector, and Detector Solenoid
 - Muons are stopped on an aluminum target
 - Tracker measures momentum and trajectories of from muonic atoms
 - Calorimeter measures energy/time
 - Carolimeter measures energy time

Cosmic Ray Veto detector surrounds detector solenoid

The Mu2e Proton Beam

- Mu2e will take advantage of the existing Booster, Recycler, Accumulator, and Antiproton Source Debuncher rings at Fermilab
- Mu2e will run in parallel with NOvA

FERMILAB'S ACCELERATOR CHAIN

15

Proton Pulse Structure

Proton Pulse Structure:

- We use a pulsed proton beam with a delayed data-taking window to suppress short-lived (prompt) backgrounds
- A 700 ns delay reduces pion background by $> 10^{-9}$

Production Target

Production Target

- Radiatively cooled tungsten target suspended by wires
- Produces pions when struck by the proton beam
- Pions are guided to the stopping target by the production and transport solenoids

Stopping Target

Stopping Target

- Aluminum stopping target composed of foils suspended by wires
- If a signal is seen, other stopping target materials may be used to narrow down what kind of physics is responsible
- Design is still being optimized, but it will probably consist of something like aluminum foil annuli suspended at intervals in a cylindrical volume

Tracker I

- A low-mass annular tracker provides us with high-precision measurements of charged particle momenta
 - Designed to function in a high background environment
 - Within the detector solenoid, track radius is proportional to energy so we use an annular design that only detects particles with large enough radii

• Expect < 180 keV/c p_T resolution at 105 MeV/c (< 0.18%)

Tracker II

- **Tracker Construction:**
 - Tracker is constructed from self-supporting panels of low mass straws tubes detectors:

- 5 mm diameter straw
- Spiral wound
- Walls: 12 mm Mylar + 3 mm epoxy + 200 Å Au + 500 Å Al
- 25 mm Au-plated W sense wire
- 33 117 cm in length
- 80/20 Ar/CO2 with HV < 1500 V

96 straws/panel

Sets of 6 panels are attached to form a plane, 2 planes are combined to form a station, and 18 stations are arranged in a cylindrical volume to form the tracker:

2 panels/station

Tracker III

• Tracker Construction:

Calorimeter I

- Calorimeter Serves to
 - Distinguish muons from electrons
 - Aid in track pattern recognition
 - Provide tracker-independent trigger
 - Provide accurate timing information for bkg rejection
- Calorimeter Design:
 - Two annuli with radius 37-66 cm
 - Disks separated by 70 cm $(1/2 \lambda)$
 - ~674 CsI crystals per disk
 - Two 14x20 mm² six-element SiPMs / crystal
 - Square crystals (34x34x200 mm³)

Calorimeter II

- Wrap crystals in Tyvek and stack in annulus
- A backplane assembly provides cooling and slots mounting crystal readout electronics
 - Insert SiPM holders with front end electronics (FEE) into the backplane (air-gap coupling)
 - FEE are read out by readout controllers housed in crates

Crystal Stacking

SiPM Holder

Calorimeter III

- The calorimeter will be calibrated using activated Fluorine-rich fluid
 - Fluorinert is activated using neutrons from a DT generator
 - Fluid is pumped through pipes in front of the disks
 - Calibrate energy scale to < 0.5% in a few minutes
- A UV laser system will continuously monitor SiPM gains
 - Distribute light using silica optical fibers

Calorimeter Prototype

Calorimeter Prototype Test Beam

- May 2017 test beam with 70-115 MeV electrons at INFN Frascati
 - 51 30x30x200 mm³ CsI crystals
 - Readout: Hamamatsu, SNESL, and Advansid MPPCs
- Results:

ENERGY RESOLUTION

Calibration with e⁻ at 0° For 100 MeV e⁻ at 50°: Energy resolution ~7%

TIME RESOLUTION

For 100 MeV e⁻ at 50°: ∆t resolution ~340 ps Single sensor resolution ~240 ps

Δt: Time

difference

between two

sensors reading

the same crystal.

Energy and time resolutions are well within the requirements

Cosmic Ray Veto I

- The Cosmic Ray Veto (CRV) system surrounds the detector solenoid and half the transport solenoid
 - CRV identifies cosmic ray muons

- Each day, ~1 conversion-like electron is produced by cosmic rays
 - Need the CRV to suppress this background

Cosmic Ray Veto II

• The CRV is composed of 4 layers of overlapping panels of extruded polystyrene scintillator

- Each panel is composed of $5 \times 2 \times 450 \text{ cm}^3$ scintillator bars
 - 2 embedded wavelength-shifting fibers per bar
 - Both ends of the bars are readout by SiPMs
 - In testing, the veto achieves $\varepsilon > 99.4\%$ per layer

DAQ/Trigger

• Data Acquisition (DAQ) system provides readout and control for all the detector

- Trigger processing is handled almost entirely in software (with some FPGA-based pre-processing)
 - Allows us to take advantage of commercial computing hardware
 - Filters designed and tested in the offline environment can be run in the online trigger environment

DAQ Server Setup

- Online processing provided by 40 commercial 3U rack-mount servers
- Each server houses 2 PCIe cards with onboard FPGA and custom firmware that provide detector readout/control as well as data pre-processing

Mu2e Building

The Mu2e Collaboration

Over 200 Scientists from 37 Institutions

Argonne National Laboratory • Boston University Brookhaven National Laboratory Lawrence Berkeley National Laboratory and University of California, Berkeley • University of California, Davis • University of California, Irvine • California Institute of Technology • City University of New York • Joint Institute for Nuclear Research, Dubna • Duke University • Fermi National Accelerator Laboratory • Laboratori Nazionali di Frascati • INFN Genova • HelmholtzZentrum Dresden-Rossendorf • University of Houston • Institute for High Energy Physics, Protvino • Kansas State University • INFN Lecce and Università del Salento • Lewis University of Liverpool • University College London • University of Louisville • University of Manchester • Laboratori Nazionali di Frascati and Università Marconi Roma • University of Minnesota • Institute for Nuclear Research, Moscow • Muons Inc. • Northern Illinois University • Northwestern University • Novosibirsk State University of Washington • Yale University

Detector Hall (Lower Level)

Mu2e Schedule

34

Z-Dependence of $\mu \rightarrow e$ Conversion

Mu2e II Introduction

- As Mu2e approaches commissioning, we are also looking toward future upgrades
- The proposed Mu2e II experiment aims to achieve an order of magnitude improvement in sensitivity over Mu2e
 - If there is no signal at Mu2e: We could extend our sensitivity to find a signal or set new limits
 - If Mu2e does see something: We can improve our statistical significance and use different target materials to narrow down the NP processes involved
- To achieve a 10X improvement, we need:
 - An upgraded proton source (already approved)
 - Other upgrades to parts of the detector
- We aim to reduce costs by reusing parts of mu2e wherever feasible

Mu2e II Plans

- So far, various studies of Mu2e II backgrounds, sensitivity, and radiation damage have been performed
- A series of Mu2e II workshops has been held and the collaboration is involved in the Fermilab PIP-II planning process (a superconducting linac for LBNF and the muon campus)
 - PIP-II will have an energy of 800 MeV (Mu2e's proton source is 8 GeV) which is below the anti-nucleon production threshold and will result in less background
- An expression of interest was recently submitted to the Fermilab PAC
- Timecale:
 - Mu2e is expected to run for 4 years of data-taking at full intensity
 - Assuming 2-3 years from the end of Mu2e to the start of Mu2e II, Mu2e II could begin taking data around 2030

Summary

The Mu2e experiment will improve current $\mu^- N \to e^- N$ CLFV sensitivity limits by 4 orders of magnitude (and thereby constrain many NP models at mass scales up to ~10,000 TeV)

- Mu2e will be sensitive to a broad range of NP models
 - If we see a signal, switching to another stopping target material will provide further information about the Lorentz structure of the NP

• Progress is on schedule and we plan to begin commissioning in 2020

Backup Slides

Purely Leptonic Conversion Processes

$$L_{\text{CLFV}} = \frac{m_m}{(1+k)\Lambda^2} \overline{m}_R s_{mn} e_L F^{mn} + \frac{k}{(1+k)\Lambda^2} \overline{m}_L g_m e_L (\overline{e}_L g_m e_L) + h.c.$$

 Λ : effective mass scale of New Physics k: relative contribution of the contact term

