Analysis of $\eta \pi^0$ and $\eta' \pi^0$ Systems at GlueX

Alexander Austregesilo for the GlueX Collaboration

13th Conference on the Intersections of Particle and Nuclear Physics (CIPANP 2018) Palm Springs, CA June 1st, 2018

Outline

 $2 \gamma \boldsymbol{p} \rightarrow \eta \pi^{\mathbf{0}} \boldsymbol{p}$

Meson Spectroscopy

Jefferson Lab Thomas Jefferson National Accelerator Facility

Non-Relativistic Quark Model

•
$$\vec{J} = \vec{L} + \vec{S}$$

P =
$$(-1)^{L+1}$$

•
$$C = (-1)^{L+S}$$

Meson Spectroscopy

Jefferson Lab Thomas Jefferson National Accelerator Facility

Non-Relativistic Quark Model

•
$$\vec{J} = \vec{L} + \vec{S}$$

P =
$$(-1)^{L+1}$$

•
$$C = (-1)^{L+S}$$

Not only mesons permitted by QCD

- Exotic quantum numbers $J^{PC} = 0^{+-}, 1^{-+}, 2^{+-}, ...$
- Forbidden in constituent quark model
- Observation is direct evidence for exotic states

Gell-Mann's Totalitarian Principle: Everything not forbidden is compulsory!

Jefferson Lab

Motivation

Motivation $n\pi^0$ $n'\pi^0$ Outlook

COMPASS [PLB 740 (2015) 303]

- A strong P-wave was found in all $\eta'\pi$ systems, less if any at all in $\eta\pi$
- Interpretation as resonances $\pi_1(1400)/\pi_1(1600)$ is still unclear
- Almost exclusively hadro-production

Photoproduction

Complementary Production Mechanism

- Photon coupling via vector meson dominance
- Wide variety of I^GJ^{PC} states accessible
- Photon polarization provides additional constraints

Photon Beam Line

A. Austregesilo (aaustreg@jlab.org) — $\eta\pi^0$ and $\eta'\pi^0$ at GlueX

GlueX Detector

 \rightarrow J.R. Stevens, Recent Results from GlueX [Plenary 2]

Motivation
$$\eta \pi^0$$
 $\eta' \pi^0$ Outlook

$$\gamma + \mathbf{p} \rightarrow \eta \pi^{\mathbf{0}} + \mathbf{p}_{\mathbf{k}\pi^{+}\pi^{-}\pi^{\mathbf{0}}}$$

Decay Amplitudes

Angular Distribution

Discussion (not acceptance corrected!)

- $a_0(980)$: flat intensity at 1 GeV/ c^2
- $a_2(1320)$: interference near 1.3 GeV/ c^2
- Contribution from forward η : $cos \vartheta = 1$

VanHove Distribution

Jefferson Lab Thomas Jefferson National Accelerator Facility

L. VanHove: longitudinal phase-space distribution to qualify multiperipheral reactions [Nucl. Phys B9 (1969) 331], [Phys. Lett. B28, 6 (1969) 429]

$$p_i = q_i + p_{\perp i} \quad , \quad \sum_{i=1}^3 q_i = 0$$
$$q_1 = r \sin \omega$$

$$q_2 = r\sin(\omega - \frac{2\pi}{3})$$
$$q_3 = r\sin(\omega - \frac{4\pi}{3})$$

VanHove Distribution

L. VanHove: longitudinal phase-space distribution to qualify multiperipheral reactions [Nucl. Phys B9 (1969) 331], [Phys. Lett. B28, 6 (1969) 429]

$$p_i = q_i + p_{\perp i} \quad , \quad \sum_{i=1}^3 q_i = 0$$
$$q_1 = r \sin \omega$$
$$q_2 = r \sin(\omega - \frac{2\pi}{3})$$
$$q_3 = r \sin(\omega - \frac{4\pi}{3})$$

EXERCY $(1 - 1)^{0}$ A. Austregesilo (aaustreg@jlab.org) $- \eta \pi^{0}$ and $\eta' \pi^{0}$ at GlueX

VanHove Distribution

Jefferson Lab

L. VanHove: longitudinal phase-space distribution to qualify multiperipheral reactions [Nucl. Phys B9 (1969) 331], [Phys. Lett. B28, 6 (1969) 429]

BENERGY \swarrow^{A} A. Austregesilo (aaustreg@jlab.org) — $\eta \pi^{0}$ and $\eta' \pi^{0}$ at GlueX

- Large data set and versatile detector permitts analysis of all modes
- Four-photon final state has better reconstruction efficiency
- Charge exchange reaction limits possible production mechanisms

Motivation
$$\eta \pi^0 \quad \eta' \pi^0$$
 Outlook

$$\gamma + p \rightarrow \eta' \pi^{0} + p$$
$$\downarrow \pi^{+} \pi^{-} \eta$$
$$\downarrow \gamma \gamma$$

GLUE

water of the state water

Preliminary

π⁺π⁻n Invariant Mass (GeV/c²)

Angular Distribution

 $\eta\pi^0$

 $\eta' \pi^0$

Discussion (not acceptance corrected!)

- Contribution from forward-going η' : $cos\vartheta = 1$
- Larger asymmetry in resonance region for $\eta' \pi^0$ compared to $\eta \pi^0$

Summary and Outlook

Summary

- \approx 75% of GlueX-I data recorded, \approx 25% analyzed
- Competitive statistics in multiple decay modes
- Ongoing studies on production mechanism and systematics

Outlook

- Acceptance-corrected amplitude analysis with polarized beam
- Collaboration with JPAC (Joint Physics Analysis Center) on amplitudes and models
- Reach definitive conclusion on resonance content