

Arnaud Ferrari

Introduction

hh ightarrow bbbb

hh ightarrow bb $\gamma\gamma$

 $hh
ightarrow WW \gamma \gamma$

Conclusion

Searches for Higgs boson pair production with ATLAS

Arnaud Ferrari (Uppsala University) on behalf of the ATLAS collaboration

CIPANP, Palm Springs (USA), 29 May - 3 June 2018

Searches for Higgs boson pair production with ATLAS Arnaud Ferrari

Introduction

hh ightarrow bbbb

hh ightarrow bb $\gamma\gamma$

 $hh
ightarrow WW \gamma \gamma$

Conclusion

The Higgs potential

After discovering the Higgs boson, the ultimate probe of the Standard Model is to fully measure the Higgs potential.

 $\rightarrow v = \mu/\sqrt{\lambda} = 246 \text{ GeV}$ and $\lambda = m_h^2/(2v^2) = 0.13$ fully determine the shape of the Higgs potential.

 \rightarrow In order to really complete the Standard Model, one must observe $h \rightarrow hh$ (and eventually $h \rightarrow hhh$ too).

Arnaud Ferrari

Introduction

hh ightarrow bbbb

hh ightarrow bb $\gamma\gamma$

 $hh \rightarrow WW\gamma\gamma$

Conclusion

SM Higgs boson pair production

Gluon-gluon fusion:

Due to the destructive interference between the box and Higgs self-coupling diagrams, the SM Higgs boson pair production cross-section is very small (33.4 fb at 13 TeV).

Other production modes: even smaller cross-sections...

\sqrt{s}	8 TeV	13 TeV	14 TeV			
ggF <i>hh</i>	10.2	33.4	39.6			
VBF hh	0.46	1.62	1.95			
W/Z + hh	0.36	0.86	0.98			
tt + hh	0.17	0.77	0.95			
$\sigma_{\sf NLO}^{hh}$ in fb (https://arxiv.org/abs/1610.07922)						

Searches for Higgs boson pair production with ATLAS Arnaud Ferrari

Introduction

hh
ightarrow bbbb

 $\mathsf{n}\mathsf{n} o\mathsf{p}\gamma\gamma$

 $hh
ightarrow WW \gamma \gamma$

Conclusion

BSM Higgs boson pair production

Enhancements of the *hh* production cross-section and modified kinematics (e.g. m_{hh} , p_T^h) may occur through variations of the Yukawa- or self-coupling, as well as new vertices.

 $\leftarrow \text{Phys. Lett. B732 (2014) 142} \\ (\lambda = \text{Higgs self-coupling})$

Resonant Higgs boson pair production:

- Randall-Sundrum graviton (spin-2): $G \rightarrow hh$
- 2HDM heavy Higgs boson (spin-0): H → hh

CIPANP, Palm Springs (USA), 29 May - 3 June 2018

Higgs boson pair decays

Searches for Higgs boson pair production with ATLAS

Arnaud Ferrari

Introduction

hh ightarrow bbbb

hh ightarrow bb $\gamma\gamma$

hh ightarrow WW $\gamma\gamma$

Conclusion

	bb	ww	π	ZZ	γγ
bb	33%				
WW	25%	4.6%			
π	7.4%	2.5%	0.39%		
ZZ	3.1%	1.2%	0.34%	0.076%	
γγ	0.26%	0.10%	0.029%	0.013%	0.0053%

Run-1 legacy:

Analysis	$\gamma\gamma bb$	$\gamma \gamma WW^*$	$bb\tau\tau$	bbbb	Combined
		Upper limit o	n the cross s	section [pb]	
Expected	1.0	6.7	1.3	0.62	0.47
Observed	2.2	11	1.6	0.62	0.69
	Upper lim	it on the cross s	ection relati	ve to the S	M prediction
Expected	100	680	130	63	48
Observed	220	1150	160	63	70

Many final states to explore... In this talk:

• bbbb:

largest branching fraction

 bbγγ & WWγγ: clean diphoton signature

Arnaud Ferrari

Introduction

hh
ightarrow bbbb

hh ightarrow bb $\gamma\gamma$

hh ightarrow WW $\gamma\gamma$

Conclusion

hh
ightarrow bbbb

< D

Arnaud Ferrari

Introduction

hh
ightarrow bbbb

 $hh
ightarrow bb \gamma \gamma$

 $hh
ightarrow WW \gamma \gamma$

Conclusion

$hh \rightarrow bbbb$ – event categories

Two event topologies depending on the probed mass range:

- Non-resonant and resonant production of *hh* → *bbbb* with mass up to ~1 TeV: resolved topology.
- Resonant production of *hh* → *bbbb* with mass ≥1 TeV: boosted topology.

R=0.4	Topology/	Resolved	Boosted	R=1.0
	Objects	(260-1400 GeV)	(800-3000 GeV)	
	Triggers and	Combination of	Single large-R	
	corresponding	b-jet triggers	jet trigger	sile
	$\int L dt$ (fb ⁻¹)	3.2+24.3	36.1	
	N _{jets}	\geq 4 jets, $R = 0.4$	\geq 2 jets, $R = 1.0$	
	p_T cut	40 GeV	450 / 250 GeV	
	b-tagging	70% for	70% on track-jets	
		all jets	with <i>R</i> = 0.2	
	<i>N</i> b-jets	4	2,3,4	RIT

$hh \rightarrow bbbb$ – event displays

Searches for Higgs boson pair production with ATLAS Arnaud Ferrari

Introduction $hh \rightarrow bbbb$ $hh \rightarrow bb\gamma\gamma$ $hh \rightarrow WW\gamma\gamma$ Conclusion

Resolved, $m_{4j} = 272 \text{ GeV}$

Boosted, $m_{2i} = 3.89 \text{ TeV}$

Arnaud Ferrari

Introduction

hh
ightarrow bbbb

hh ightarrow bb $\gamma\gamma$

 $hh \rightarrow WW\gamma\gamma$

Conclusion

hh ightarrow bbbb - resolved topology

Event selection:

- The four jets with highest *b*-tagging scores are used.
- A selection and pairing of jets into Higgs boson candidates is performed using ΔR_{jj}, m_{4j} and differences in m_{2j}.

- m_{4j} and m_{2j} -dependent requirements on the p_T and mass of the Higgs boson candidates are applied \Rightarrow SR centered at (120 GeV; 110 GeV).
- Events where a three-jet-combination is compatible with a top-quark decay are vetoed to reduce the $t\bar{t}$ background contamination.

CIPANP, Palm Springs (USA), 29 May - 3 June 2018

Arnaud Ferrari

```
Introduction
```

```
hh 
ightarrow bbbb
```

hh ightarrow bb $\gamma\gamma$

 $hh
ightarrow WW \gamma \gamma$

Conclusion

hh ightarrow bbbb - resolved topology

Multi-jet background (95% in the SR):

- Multi-jet sample: built with the nominal event selection, but N_b = 2: one h candidate from the two b-tagged jets, one from two non-b-tagged jets;
- Weights are applied to the 2b+2j sample of the SR. They are derived by comparing 2b+2j and 4b samples in a sideband (SB) region:
 - per-non-b-tagged-jet factor by comparing jet multiplicities;
 - fitted ratio of 4b and 2b+2j templates (after subtracting tt
) for five variables sensitive to differences in b-tagging [iterative].

$t\bar{t}$ background (5% in the SR):

- Simulation $\rightarrow m_{4j}$ shape for fully-hadronic and semi-leptonic $t\bar{t}$;
- Normalizations of multi-jet events, fully-hadronic and semi-leptonic tt by a simultaneous fit of three background-enriched regions of the SB.

CIPANP, Palm Springs (USA), 29 May - 3 June 2018

Arnaud Ferrari

Introduction

hh
ightarrow bbbb

 $hh \rightarrow bb\gamma\gamma$

 $hh
ightarrow WW \gamma \gamma$

Conclusion

hh ightarrow bbbb - resolved topology

After the validation of backgrounds in control regions, no significant excess of events is found in the SR:

Sample	20	15 SR	20	16 SR	$2015 \ \mathrm{CR}$	$2016 \ CR$
Multijet	866	± 70	6750	± 170	880 ± 71	7110 ± 180
$t\bar{t}$, hadronic	52	± 35	259	± 57	56 ± 37	276 ± 61
$t\bar{t}$, semileptonic	13.9	± 6.5	123	± 30	20 ± 9	168 ± 40
Total	930	± 70	7130	± 130	$956\pm~50$	7550 ± 130
Data	928		7430		969	7656
$G_{\rm KK}$ (800 GeV)	12.5	± 1.9	89	± 14		
Scalar (280 GeV)	24	± 7.5	180	± 57		
SM HH	0.60	7 ± 0.091	4.4	3 ± 0.66		

Largest local deviation at 280 GeV: it is 3.6σ for a narrow-width scalar resonance (global significance of 2.3σ).

Arnaud Ferrari

Introduction

hh
ightarrow bbbb

hh ightarrow bb $\gamma\gamma$

hh $ightarrow WW\gamma\gamma$

Conclusion

hh ightarrow bbbb - boosted topology

Event selection:

- The two large-*R* jets with highest *p*_T are used, with |Δη_{JJ}| < 1.7;
- \geq 1 *b*-tagged track-jet per *J* \Rightarrow 2, 3, 4 *b*-tags;
- Requirements on the jet masses \Rightarrow SR centered at (124 GeV; 115 GeV).

Background estimation:

- Multi-jet template from "lower-tagged" event selections (i.e. one of the large-*R* jet has no *b*-tagged track-jet and at least one failing *b*-tagging)
 + re-weight the kinematics of the non-*b*-tagged *J* to mimic a *h* candidate;
- Normalization of the backgrounds from binned likelihood fits of the leading large-*R* jet mass distribution in the sideband region.

CIPANP, Palm Springs (USA), 29 May - 3 June 2018

Searches for Higgs boson pair production with ATLAS Arnaud Ferrari

Introduction

hh
ightarrow bbbb

hh ightarrow bb $\gamma\gamma$

 $hh \rightarrow WW\gamma\gamma$

Conclusion

hh ightarrow bbbb - boosted topology

After the validation of backgrounds in control regions, no significant excess of events is found in the SR:

	Two-tag	Three-tag	Four-tag
Multijet	3390 ± 150	702 ± 63	32.9 ± 6.9
$t\bar{t}$	860 ± 110	80 ± 33	1.7 ± 1.4
Total	4250 ± 130	782 ± 51	34.6 ± 6.1
$G_{\rm KK}$ (2 TeV)	0.97 ± 0.29	1.23 ± 0.16	0.40 ± 0.13
Scalar (2 TeV)	28.2 ± 9.0	35.0 ± 4.6	10.9 ± 3.5
Data	4376	801	31

Discriminant = m_{2J} after correction of the large-*R* jet momenta by m_h/m_J .

Arnaud Ferrari

```
Introduction
```

```
hh 
ightarrow bbbb
```

 $hh
ightarrow bb \gamma \gamma$

hh ightarrow WW $\gamma\gamma$

Conclusion

$hh \rightarrow bbbb - results$

Statistical analysis:

- Combination of the resolved and boosted topologies in the range 800-1400 GeV, where they overlap.
- Simultaneous fit of m_{4j} in the 2015 and 2016 dataset for resolved topologies, and of m_{2J} in the 2, 3 and 4 b-tag regions for boosted topologies.

Non-resonant hh production:

Observed 95% CL upper limit on $\sigma_{hh} \times BR(bbbb)$ at 147 fb.

In units of the SM prediction:

Observed	-2σ	-1σ	Expected	$+1\sigma$	$+2\sigma$
13.0	11.1	14.9	20.7	30.0	43.5

Resonant *hh* production (2HDM interpretation):

Arnaud Ferrari

Introductior

hh ightarrow bbbb

 $hh \rightarrow bb\gamma\gamma$ $hh \rightarrow WW\gamma$

Conclusion

 $hh \rightarrow bb\gamma\gamma$

< D

< b

Arnaud Ferrari

Introduction

hh ightarrow bbbb

 $hh
ightarrow bb \gamma \gamma$

 $hh
ightarrow WW \gamma \gamma$

Conclusion

$hh \rightarrow bb\gamma\gamma$ – event selections

Two photons

- Di-photon trigger with thresholds at 35 and 25 GeV;
- 2 photons with $E_T/m_{\gamma\gamma}$ above 0.35/0.25 & $m_{\gamma\gamma} \subset$ [105; 160] GeV.

Jet selection

- \geq 2 central jets with p_T > 25 GeV, reject events with >2 *b*-tags (70%);
- 2-tag: exactly 2 b-jets (70%);
- 1-tag: fails 2-tag but has 1 b-jet (60%) + BDT to choose the second jet;
- ${\ensuremath{ \bullet}}$ 0-tag \rightarrow data-driven estimates of the background shape.

Additional loose (tight) selection

- Optimised for 260–500 GeV & varied λ (\geq 500 GeV & non-resonant);
- Leading jet $p_T > 40 (100)$ GeV, sub-leading jet $p_T > 25 (30)$ GeV;
- *m_{ij}* between 80 (90) and 140 GeV;
- $m_{\gamma\gamma}$ within 4.7 (4.3) GeV of m_h [resonant].

CIPANP, Palm Springs (USA), 29 May - 3 June 2018

Arnaud Ferrari

Introduction

hh ightarrow bbbb

```
hh 
ightarrow bb \gamma \gamma
```

 $hh \rightarrow WW\gamma\gamma$

Conclusion

$hh ightarrow bb\gamma\gamma$ – signal and background models

Non-resonant hh production

- Analysis strategy: fit the $m_{\gamma\gamma}$ distribution.
- Signal modelling: double-sided Crystal Ball function.
- Single Higgs boson production: simulation, double-sided Crystal Ball function.
- Continuum background modelling: fit to the data with a first-order exponential, which minimises the spurious signal*.

Resonant hh production

- Analysis strategy: rescale the dijet four-momentum by m_h/m_{jj} and fit the $m_{\gamma\gamma ij}$ distribution around m_X .
- Signal modelling: Gaussian core with exponential tails.
- Background modelling: fit to the data, with a functional form chosen to minimise the spurious signal → Novosibirsk (exponential) function for the loose (tight) event selection.

(*) Spurious signal: bias measured by fitting a signal+background model to a background-only sample.

CIPANP, Palm Springs (USA), 29 May - 3 June 2018

Searches for Higgs boson pair production with ATLAS Arnaud Ferrari

Introduction $hh \rightarrow bbbb$ $hh \rightarrow bb\gamma\gamma$

- · · [′]

$hh ightarrow bb\gamma\gamma$ – results

Non-resonant hh production:

 $\Longrightarrow -8.2 < \kappa_{\lambda} < 13.2$ @ 95% CL!

CIPANP, Palm Springs (USA), 29 May - 3 June 2018

No significant excess.

Tight selection used to set 95% CL limits on the cross section for non-resonant production:

Observed	-1σ	Expected	$+1\sigma$
22	20	28	40

$hh ightarrow bb\gamma\gamma$ – results

Resonant hh production:

Loose (tight) selection used up to (above) 500 GeV. Observed 95% upper limits ranging from 1.14 to 0.12 pb.

Arnaud Ferrari

Introduction

hh ightarrow bbbb

hh ightarrow bb $\gamma\gamma$

 $\textit{hh} \rightarrow \textit{WW} \gamma \gamma$

Conclusion

 $hh \rightarrow WW\gamma\gamma$

< D

- Arnaud Ferrari
- Introduction
- hh ightarrow bbbb
- hh ightarrow bb $\gamma^{
 m c}$
- $hh \rightarrow WW\gamma\gamma$
- Conclusion

$hh \rightarrow WW\gamma\gamma$ – event selections Signal region (SR):

- di-photon trigger with thresholds at 35 and 25 GeV;
- 2 photons with E_T/m_{γγ} above 0.35/0.25;
- $|m_{\gamma\gamma} 125.1 \text{ GeV}| < 3.4 \text{ GeV};$
- ρ^{γγ}_T > 100 GeV for the high-mass resonant (400–500 GeV) and the non-resonant production modes.

• $W(\ell \nu)W(jj)$: ≥ 1 electron/muon of $p_T > 10$ GeV, ≥ 2 central jets, *b*-veto.

Sideband (SB): 105 GeV $< m_{\gamma\gamma} <$ 160 GeV & inverted SR cut.

Background modelling:

- Continuum background from a SB-fit: exponential of a 2nd-degree polynomial, with free-floating shape parameters and normalisation.
- SM single-Higgs events from simulation (double-sided Crystal Ball).
- SM *hh* events from simulation (double-sided Crystal Ball) → background in searches for resonant production.

Searches for Higgs boson pair production with ATLAS Arnaud Ferrari

Introduction $hh \rightarrow bbbb$ $hh \rightarrow bb\gamma\gamma$ $hh \rightarrow WW\gamma\gamma$

$hh ightarrow WW \gamma \gamma$ – results

Statistical analysis based on a fit to $m_{\gamma\gamma}$ in the SR: $\mathcal{L}(\mu, \theta) = \prod G(\theta|0, 1) \prod_{i} [(n_{\text{signal}}(\mu, \theta) + n_{\text{ss}}) \times f^{1}_{dscb}(m^{i}_{\gamma\gamma}, \theta) + n_{cont.} \times f_{cont.}(m^{i}_{\gamma\gamma}, \theta) + n^{\text{SM}}_{h}(\theta) \times f^{2}_{dscb}(m^{i}_{\gamma\gamma}, \theta) + n^{\text{SM}}_{hh} \times f^{3}_{dscb}(m^{i}_{\gamma\gamma}, \theta)]$

*n*_{ss}: spurious signal obtained by fitting a signal+background model to a background-only sample.

CIPANP, Palm Springs (USA), 29 May - 3 June 2018

Searches for
Higgs boson pair
production with
ATLAS
Arnaud Ferrari

Introduction

hh ightarrow bbbb

hh ightarrow bb $\gamma\gamma$

 $hh \rightarrow WW\gamma\gamma$

Conclusion

$hh \rightarrow WW\gamma\gamma$ – results

Limits on non-resonant hh production:

Observed	-2σ	-1σ	Expected	$+1\sigma$	$+2\sigma$
230	90	120	160	240	340

Limits on resonant hh production (260-500 GeV):

Observed: 40 to 6.1 pb Expected: 17.6 to 4.4 pb

Arnaud Ferrari

Introduction

hh ightarrow bbbb

hh ightarrow bb $\gamma\gamma$

 $hh
ightarrow WW \gamma \gamma$

Conclusion

Conclusion

- The ATLAS collaboration has recently released three results on searches for Higgs boson pair production, based on 36/fb of 13 TeV data:
 - $hh \rightarrow bbbb$: arXiv:1804.06174, submitted to JHEP.
 - $hh \rightarrow bb\gamma\gamma$: off the press!
 - $hh \rightarrow WW\gamma\gamma$: off the press!
- Non-resonant *hh* production down to 13 times the SM prediction is now excluded (*bbbb*).
- Higgs self-coupling constrained to -8.2 < κ_λ < 13.2 (bbγγ).

Searches for *hh* production will eventually allow to fully validate the electroweak symmetry breaking in the SM and they already probe BSM physics... Such analyses will be a major highlight of the LHC Run-2, with soon 3 to 4 times more data than presented here!

Arnaud Ferrari

Introduction

hh ightarrow bb $\gamma\gamma$

hh ightarrow WW $\gamma\gamma$

Conclusion

Back-up

• 7

Arnaud Ferrari

 $\begin{array}{l} \mbox{Introduction} \\ hh \rightarrow \mbox{ bbbb} \\ hh \rightarrow \mbox{ bbb} \\ hh \rightarrow \mbox{ bb} \gamma \gamma \\ hh \rightarrow \mbox{ WW} \gamma \gamma \end{array}$

Conclusion

HL-LHC projections: $hh \rightarrow bbbb$

Extrapolation of results in ATLAS-CONF-2016-049. All distributions are corrected to account for the increase $13 \rightarrow 14$ TeV and $10.1 \rightarrow 3000$ /fb.

Assuming a jet p_T threshold at 30 GeV, and either no or the same systematic uncertainties as in 2016:

El 2000 Transformation and the second particular second particu

Projections versus the jet p_T threshold:

Jet Threshold [GeV]	Background Systematics	σ/σ_{SM} 95% Exclusion	$\lambda_{HHH}/\lambda_{HHH}^{SM}$ Lower Limit	$\lambda_{HHH}/\lambda_{HHH}^{SM}$ Upper Limit
30 GeV	Negligible	1.5	0.2	7
30 GeV	Current	5.2	-3.5	11
75 GeV	Negligible	2.0	-3.4	12
75 GeV	Current	11.5	-7.4	14

Assume that systematic uncertainties $\propto 1/\sqrt{L}$: \Rightarrow exclude $\sigma_{hh} > 2.2 \times SM$ @ 95% CL with 3000/fb.

- Arnaud Ferrari
- Introduction $hh \rightarrow bbbb$
- hh ightarrow bb $\gamma\gamma$
- $hh \rightarrow WW\gamma\gamma$

Conclusion

HL-LHC projections: $hh \rightarrow bb\gamma\gamma$

Study based on 14 TeV simulations with 200 *pp* collisions per bunch-crossing and an upgraded ATLAS detector, including the expected photon and *b*-tagging performance.

