Searches for rare and non-Standard Model decays of the Higgs boson

Elliot Reynolds, for the ATLAS Collaboration Wednesday, CIPANP 2018

- Higgs discovery has opened a window to probe nature!
- Further studies required to establish nature of Higgs sector
- Rare decays
 - 1^{st} and 2^{nd} generation couplings?
 - Sensitive to modification from new physics
- BSM decays
 - BR($H \rightarrow \text{unobserved}$) $\lesssim 20\%$ (indirect)
 - Extended Higgs sector?
 - Higgs as a dark matter portal?

Rare Decays

- Decays via loops:
 - $H \rightarrow Z\gamma$: $\sigma BR < 6.6 \sigma_{SM} BR_{SM}$
- Invisible decays:
 - $H \rightarrow \text{invisible (direct): } BR < 67\%$
- Direct decays to light fermions:
 - $\underline{H} \rightarrow c\bar{c}$: $\sigma BR < 110 \sigma_{SM} BR_{SM}$
 - $\blacksquare \ \underline{H \to \mu\mu}: \ \sigma BR < \mathbf{2.8} \ \sigma_{SM} BR_{SM}$
- See $\underline{H} \rightarrow f\bar{f}$ talk by Tatsuya Masubuchi
- Decays to mesons (next slides)

$H \rightarrow M\gamma$ - Motivation and Target Mesons

arXiv:1712.02758 and arXiv:1501.03276

Direct

Indirect

16

- Window to 1st and 2nd generation Yukawa couplings
- Distinctive topology to trigger and select events
- Target mesons:

$$\rho: \mathsf{BR}_{SM}(H \to \rho\gamma) = 1.7 \times 10^{-5} , \rho \to \pi^+\pi^-$$

$$J/\psi: \text{ BR}_{\text{SM}}(H \to J/\psi\gamma) = 2.8 \times 10^{-6} \text{ }^{\circ}, \ J/\psi \to \mu^{+}\mu$$

■ J/ψ : BK_{SM}($H \rightarrow J/\psi\gamma$) = 2.8 × 10 ° *, $J/\psi \rightarrow \mu^{+}\mu^{-}$ ■ Υ : BR_{SM}($H \rightarrow \Upsilon(1S, 2S, 3S)\gamma$) = (6.1, 2.0, 2.4) × 10⁻¹⁰ [‡], $\Upsilon \rightarrow \mu^{+}\mu^{-}$

arXiv:1505.03870

arXiv:1407.6695

Elliot Reynolds

CIPANP 2018

arXiv:1712.02758 and arXiv:1501.03276

- ρ & ϕ trigger on tracks from meson decay and γ
- J/ψ & Υ trigger on muons
- Dominant backgrounds: jet+ γ and dijet
- J/ψ & Υ events categorised as (un)converted γ and μμ in barrel (end-cap)
- Background estimates derived using a non-parametric data-driven method
- Signal modelled as (double) Gaussian in $m_{M\gamma}$

$H \rightarrow \rho \gamma \& \phi \gamma$ Results

No significant excess observed

Unbinned maximum likelihood fits extract 95% CL limits of:

BR(
$$H \rightarrow \rho \gamma$$
) < 8.8 × 10⁻⁴ (52×SM)

■ BR(
$$H \to \phi \gamma$$
) < 4.8 × 10⁻⁴ (208×SM)

Statistically limited

arXiv:1712.02758

$H \rightarrow J/\psi \gamma \& \Upsilon \gamma$ Results

⁶/16

arXiv:1501.03276

- No significant excess observed
- Unbinned maximum likelihood fits extract 95% CL limits of:
 - BR($H \to J/\psi\gamma$) < 1.5 × 10⁻³ ■ BR($H \to \Upsilon(15, 25, 35)\gamma$) < (1.3, 1.9, 1.3) × 10⁻⁶

Statistically limited

BSM Decays

Tracy Berry, IoP 2017

$H \rightarrow a^0 a^0 \& Z_D Z_D \rightarrow \ell \ell \ell \ell$ - Overview

arXiv:1802.03388

16

- Dual interpretation analysis:
 - Seudoscalar a^0 from 2HDM+s[†], 4 μ only
 - Vector Z_D from Higgs mixing in HAHM[‡]
- Dual range analysis:
 - Low mass: $1 < m_{a^0}$ & $_{Z_D} < 15$ GeV, 4μ only
 - High mass: $15 < m_{a^0} \& Z_D < 60$ GeV, $4\mu + 2\mu 2e + 4e$
- Select quadruplet with min: $\Delta m = |m_{12} m_{34}|$
- Observable: $\langle m \rangle = (m_{12} + m_{34})/2$

Low Mass Yields

Process	Yield
$ZZ^* \rightarrow 4\ell$	0.10 ± 0.01
$H \rightarrow ZZ^* \rightarrow 4\ell$	0.1 ± 0.1
VVV/VBS	0.06 ± 0.03
Heavy flavour	0.07 ± 0.04
Total	0.4 ± 0.1
Data	0

High Mass Yields

Process	Yield
$ZZ^* \rightarrow 4\ell$	0.8 ± 0.1
$H \rightarrow ZZ^* \rightarrow 4\ell$	2.6 ± 0.3
VVV/VBS	0.51 ± 0.18
$Z + (t\bar{t}/J/\Psi) \rightarrow 4\ell$	0.004 ± 0.004
Reducible Background	Negligible
Total	3.9 ± 0.3
Data	6

[†]arXiv:1002.1956

[‡]arXiv:1412.0018

Elliot Reynolds

Rare & BSM Higgs Decays

CIPANP 2018

$H \rightarrow a^0 a^0 \& Z_D Z_D \rightarrow \ell \ell \ell \ell$ - Results

arXiv:1802.03388

⁸/₁₆

Elliot Reynolds

Rare & BSM Higgs Decays

CIPANP 2018

$H \rightarrow ZZ_D \rightarrow \ell \ell \ell \ell \ell$ - Overview

- Z_D arises from kinetic mixing to Z in HAHM[†]
- Search range: $15 < m_{Z_D} < 55$ GeV
- Quadruplet with dilepton mass closest to m_Z selected
- Dominant backgrounds: ZZ^* and $H \rightarrow ZZ^*$
- Dominant backgrounds estimated in MC
- Small fake lepton background estimated using data-driven method

[†]arXiv:1412.0018

arXiv:1802.03388

arXiv:1802.03388

Process	$2\ell 2\mu$	$2\ell 2e$	Total
$H \to Z Z^* \to 4\ell$	34.3 ± 3.6	21.4 ± 3.0	55.7 ± 6.3
$ZZ^* \to 4\ell$	16.9 ± 1.2	9.0 ± 1.1	25.9 ± 2.0
Reducible background	2.1 ± 0.6	2.7 ± 0.7	4.8 ± 1.1
$VVV, t\bar{t} + V$	0.20 ± 0.05	0.20 ± 0.04	0.40 ± 0.06
Total expected	53.5 ± 4.3	33.3 ± 3.4	86.8 ± 7.5
Observed	65	37	102

Elliot Reynolds

$H ightarrow a^0 a^0 ightarrow \gamma \gamma j j$ - Overview

- Sensitive to models where fermionic decays are suppressed
- Jets are gluon-induced
- Search range: $20 < m_{a_0} < 60$ GeV
- VBF production mode targeted:
 - $m_{jj}^{\text{max}} > 500 \text{ GeV}$
 - Significant contribution from ggF production mode
- $100 < m_{jj\gamma\gamma} < 150 \,\,{
 m GeV}$
- Main backgrounds: $\gamma \gamma j j$ and jjjj

$m_{\gamma\gamma}$ regime	Definition	Range of m_a values	$x_{\rm R}$ [GeV]
1	$17.5 \text{ GeV} < m_{\gamma\gamma} < 27.5 \text{ GeV}$	$20 \text{ GeV} \le m_a \le 25 \text{ GeV}$	12
2	$22.5 \text{ GeV} < m_{\gamma\gamma} < 37.5 \text{ GeV}$	$25 \text{ GeV} \le m_a \le 35 \text{ GeV}$	12
3	$32.5 \text{ GeV} < m_{\gamma\gamma} < 47.5 \text{ GeV}$	$35 \text{ GeV} \le m_a \le 45 \text{ GeV}$	16
4	$42.5 \text{ GeV} < m_{\gamma\gamma} < 57.5 \text{ GeV}$	$45 \text{ GeV} \le m_a \le 55 \text{ GeV}$	20
5	52.5 ${\rm GeV} < m_{\gamma\gamma} < 65.0~{\rm GeV}$	55 GeV $\leq m_a \leq 60$ GeV	24

11

arXiv:1803.11145

arXiv:1803.11145

$m_{\gamma\gamma}$ regime	А	В	С	D	Relative closure uncert.	Predicted background yield
1	15	4	28	4	0.50	6^{+7}_{-4}
2	22	6	34	15	0.32	8^{+7}_{-4}
3	12	16	29	26	0.20	37^{+23}_{-14}
4	8	12	19	38	0.21	27^{+22}_{-12}
5	6	20	20	36	0.20	66^{+56}_{-28}

- Likelihood fit performed across various mass regions and ABCD categories
- No significant excess is observed
- Dominant uncertainties are statistical

$WH ightarrow \ell u a^0 a^0 ightarrow \ell u 4b$ - Overview

¹³/16

- Produced in association with $W(\ell \nu)$
- 8 event categories:

$$(n_{jets}=3,4,5+) \times (n_{b-tags}=2,3,4+)$$

- 3 SRs: (4j,4b), (4j,3b) and (3j,3b)
- Dominant background: $t\overline{t}$ (+jj)
- BDT discriminant in SRs and H_T used in CRs

Region		m_{bbb}	m_{bbbb}	Δm_{\min}^{bb}	$H_{\rm T}$	p_{T}^W	$\Delta R_{\rm av}^{bb}$	$\Delta R_{\min}^{\ell b}$	m_{bbj}	m_{T2}
	(3j, 3b)	 ✓ 			~	~	~	√		
Signal	(4j, 3b)	 ✓ 			~	~	√		\checkmark	
	(4j, 4b)		\checkmark	√	\checkmark		~			~
Control					√					

Elliot Reynolds

Rare & BSM Higgs Decays

CIPANP 2018

$WH \rightarrow \ell \nu a^0 a^0 \rightarrow \ell \nu 4b$ - Results

arXiv:1606.08391

14

16

Elliot Reynolds

Events / 0.

10

10 10

10 10

10

0.25

.10 1.45 0.85 0.55 0.26

Rare & BSM Higgs Decays

CIPANP 2018

Search	95% CL Limit	Reference	
	Rare Decays		
$ZH ightarrow \ell \ell c ar c$	$\sigma BR < 110 \sigma_{SM} BR_{SM}$	arXiv:1802.04329	
$H ightarrow \mu \mu$	$\sigma BR < 2.8 \sigma_{SM} BR_{SM}$	arXiv:1705.04582	
$ZH \rightarrow \ell\ell$ invisible	BR< 67%	arXiv:1708.09624	
$H \rightarrow Z\gamma$	$\sigma BR < 6.6 \sigma_{SM} BR_{SM}$	<u>arXiv:1708.00212</u>	
	BSM Searches		
H ightarrow e au	BR< 1.04%	arXiv:1604.07730	
$H ightarrow \mu au$	BR< 1.43%	<u>arxiv.1004.07730</u>	
$H ightarrow a^0 a^0 ightarrow \mu \mu au au$	$BR{<}{\sim}~(3.5-100)\%$	arXiv:1505.01609	
$H ightarrow a^0 a^0 ightarrow \gamma \gamma \gamma \gamma \gamma$	$BR{<}{\sim}~(0.02-0.2)\%$	<u>arXiv:1509.05051</u>	

- Summarised below are all the searches presented in this talk
- Challenging measurements due to low S/\sqrt{B}
- HL-LHC dataset expected to improve $H \rightarrow J/\psi\gamma$ limit to: ~15xSM

Search	95% CL Limit	Reference					
	Rare Decays						
$H \to \rho \gamma$	$\sigma BR < 52 \sigma_{SM} BR_{SM}$	arXiv:1712.02758					
$H \to \phi \gamma$	$\sigma BR < 208 \sigma_{SM} BR_{SM}$	<u>arxiv.1712.02750</u>					
$H ightarrow J/\psi\gamma$	BR< 0.15%	arXiv:1501.03276					
$H \to \Upsilon \gamma$	BR<(0.13-0.19)%	<u>arxiv.1301.03270</u>					
	BSM Searches						
$H ightarrow a^0 a^0 ightarrow 4 \mu$	$BR{<}{\sim}~(0.02-100)\%$						
$H \to Z_D Z_D \to 4\ell$	$BR{<}\sim(5-30) imes10^{-5}$	<u>arXiv:1802.03388</u>					
$H \to ZZ_D \to 4\ell$	$BR{<}\sim0.1\%$						
$H ightarrow a^0 a^0 ightarrow \gamma \gamma j j$	$BR{<}{\sim}$ 10%	<u>arXiv:1803.11145</u>					
$WH \to \ell \nu a^0 a^0 \to \ell \nu 4b$	(1.5-6.2) pb	arXiv:1606.08391					

Thank you for listening!

Search	95% CL Limit	Reference					
	Rare Decays						
$H o \rho \gamma$	$\sigma BR < 52 \sigma_{SM} BR_{SM}$	arXiv:1712.02758					
$H \to \phi \gamma$	$\sigma BR < 208 \sigma_{SM} BR_{SM}$	<u>arxiv.1712.02750</u>					
$H \rightarrow J/\psi\gamma$	BR< 0.15%	arXiv:1501.03276					
$H o \Upsilon \gamma$	BR<(0.13-0.19)%	<u>arxiv.1301.03270</u>					
	BSM Searches						
$H ightarrow a^0 a^0 ightarrow 4 \mu$	$BR{<}{\sim}~(0.02-100)\%$						
$H \to Z_D Z_D \to 4\ell$	$BR{<}\sim(5-30) imes10^{-5}$	<u>arXiv:1802.03388</u>					
$H \to ZZ_D \to 4\ell$	$BR{<}\sim0.1\%$						
$H ightarrow a^0 a^0 ightarrow \gamma \gamma j j$	$BR{<}{\sim}$ 10%	arXiv:1803.11145					
$WH ightarrow \ell u a^0 a^0 ightarrow \ell u 4b$	(1.5-6.2) pb	<u>arXiv:1606.08391</u>					

Backup Slides

- Datasets used in searches
- $H
 ightarrow M\gamma$ backup materials
- $H \rightarrow a^0 a^0 \& Z_D Z_D \rightarrow \ell \ell \ell \ell$ backup materials
- $H \rightarrow ZZ_D \rightarrow \ell \ell \ell \ell$ backup materials
- $H \rightarrow a^0 a^0 \rightarrow \gamma \gamma j j$ backup materials
- $WH \rightarrow \ell \nu a^0 a^0 \rightarrow \ell \nu 4b$ backup materials

Search	Luminosity	Dataset
Rare	Decays	
$H \to \rho \gamma$	35.6 <i>fb</i> ⁻¹	2015 2016
$H \to \phi \gamma$	32.3 fb ⁻¹	2015+2010
$H ightarrow J/\psi\gamma$	19.2 fb^{-1}	2012
$H \to \Upsilon \gamma$	20.3 <i>fb</i> ⁻¹	2012
BSM S	Searches	
$H ightarrow a^0 a^0 ightarrow 4 \mu$		
$H \to Z_D Z_D \to 4\ell$	$36.1 \ fb^{-1}$	2015+2016
$H \to ZZ_D \to 4\ell$		
$H ightarrow a^0 a^0 ightarrow \gamma \gamma j j$	36.7 <i>fb</i> ⁻¹	2015+2016
$WH ightarrow \ell u a^0 a^0 ightarrow \ell u 4b$	$3.2 \ fb^{-1}$	2015

$H \rightarrow M\gamma$ Backup Materials

$H \rightarrow \rho \gamma$ Validation Regions

$H \rightarrow \phi \gamma$ Validation Regions

	Observed yields (Mean expected background)					Expected s	ignal yields
	Mass range [GeV]				H	Z	
	All	81-101		120-130		$[\mathcal{B} = 10^{-4}]$	$[\mathcal{B} = 10^{-6}]$
$\phi\gamma$	12051	3364	(3500 ± 30)	1076	(1038 ± 9)	15.6 ± 1.5	83 ± 7
$\rho\gamma$	58702	12583	(12660 ± 60)	5473	(5450 ± 30)	17.0 ± 1.7	7.5 ± 0.6

Branching Fraction Limit (95% CL)	Expected	Observed
$\mathcal{B}(H \rightarrow \phi \gamma) [10^{-4}]$	$4.2^{+1.8}_{-1.2}$	4.8
$\mathcal{B}(Z \to \phi \gamma) [\ 10^{-6} \]$	$1.3^{+0.6}_{-0.4}$	0.9
$\mathcal{B}(H \to \rho \gamma) [10^{-4}]$	$8.4^{+4.1}_{-2.4}$	8.8
$\mathcal{B}\left(Z ightarrow ho \gamma ight)$ [10^{-6}]	33^{+13}_{-9}	25

Source of systematic uncertainty	Yield uncertainty
Total H cross section	6.3%
Total Z cross section	2.9%
Integrated luminosity	3.4%
Photon ID efficiency	2.5%
Trigger efficiency	2.0%
Tracking efficiency	6.0%

$H \rightarrow J/\psi\gamma$ & $\Upsilon\gamma$ Peaks in CR

ory	Observed (Expected Background)			Sig	nal		
ego			Mass Rai	nge [C	GeV]	Z	Н
Jat	All		80-100	115-135		$\mathcal{B} [10^{-6}]$	${\cal B}~[10^{-3}]$
$\overline{}$				U	$I/\psi \gamma$		
BU	30	9	(8.9 ± 1.3)	5	(5.0 ± 0.9)	$1.29{\pm}0.07$	$1.96{\pm}0.24$
BC	29	8	(6.0 ± 0.7)	3	(5.5 ± 0.6)	$0.63{\pm}0.03$	$1.06 {\pm} 0.13$
EU	35	8	(8.7 ± 1.0)	10	(5.8 ± 0.8)	$1.37{\pm}0.07$	$1.47 {\pm} 0.18$
EC	23	6	(5.6 ± 0.7)	2	(3.0 ± 0.4)	$0.99{\pm}0.05$	$0.93 {\pm} 0.12$
				Υ	$(nS) \gamma$		
BU	93	42	(39 ± 6)	16	(12.9 ± 2.0)	$1.67 {\pm} 0.09$	2.6 ± 0.3
BC	71	32	(27.7 ± 2.4)	5	(9.7 ± 1.2)	$0.79{\pm}0.04$	$1.45 {\pm} 0.18$
EU	125	49	(47 ± 6)	16	(17.8 ± 2.4)	$2.24{\pm}0.12$	$2.5{\pm}0.3$
EC	85	31	(31 ± 5)	18	(12.3 ± 1.9)	$1.55{\pm}0.08$	$1.60 {\pm} 0.20$

	$95\% CL_s$ Upper Limits					
	J/ψ	$\Upsilon(1S)$	$\Upsilon(2S)$	$\Upsilon(3S)$	$\sum^{n} \Upsilon(nS)$	
$\frac{\mathcal{B}\left(Z\to\mathcal{Q}\gamma\right)\left[\ 10^{-6}\ \right]}{\mathcal{B}\left(Z\to\mathcal{Q}\gamma\right)\left[\ 10^{-6}\ \right]}$						
Expected	$2.0^{+1.0}_{-0.6}$	$4.9^{+2.5}_{-1.4}$	$6.2^{+3.2}_{-1.8}$	$5.4^{+2.7}_{-1.5}$	$8.8^{+4.7}_{-2.5}$	
Observed	2.6	3.4	6.5	5.4	7.9	
		$\mathcal{B}(H \to \mathcal{Q})$	$(2\gamma) [\ 10^{-3} \]$			
Expected	$1.2^{+0.6}_{-0.3}$	$1.8^{+0.9}_{-0.5}$	$2.1^{+1.1}_{-0.6}$	$1.8^{+0.9}_{-0.5}$	$2.5^{+1.3}_{-0.7}$	
Observed	1.5	1.3	1.9	1.3	2.0	
$\sigma\left(pp\to H\right)\times\mathcal{B}\left(H\to\mathcal{Q}\gamma\right)[\text{fb}]$						
Expected	26_{-7}^{+12}	38^{+19}_{-11}	45_{-13}^{+24}	38^{+19}_{-11}	54_{-15}^{+27}	
Observed	33	29	41	28	44	

26

16

$\begin{array}{c} H \rightarrow a^{0}a^{0} \And Z_{D}Z_{D} \rightarrow \ell\ell\ell\ell \\ \text{Backup Materials} \end{array}$

	$H \to ZX \to 4\ell$	$H \to XX \to 4\ell$	$H \rightarrow XX \rightarrow 4\mu$			
	$(15 \ GeV < m_X < 55 \ GeV)$	$(15 \ GeV < m_X < 60 \ GeV)$	$(1 \ GeV < m_X < 15 \ GeV)$			
QUADRUPLET	- Require at least one quadruplet of	f leptons consisting of two pairs of s	ame-flavour opposite-sign leptons			
SELECTION	 Three leading-p_T leptons satisfyin 	$p_{\rm T} > 20 \text{ GeV}, 15 \text{ GeV}, 10 \text{ GeV}$				
	- At least three muons are required to be reconstructed by combining ID and MS tracks in the 4μ channel					
	 Select best quadruplet (per 	- Select best quadruplet (per Leptons in the quadruplet are responsible for firing at least one				
	channel) to be the one with the	trigger. In the case of multi-lepton triggers, all leptons of the trigger				
	(sub)leading dilepton mass	must match to lept	ons in the quadruplet			
	(second) closest to the Z mass					
	- 50 $GeV < m_{12} < 106 GeV$					
	- $12 \ GeV < m_{34} < 115 \ GeV$					
	- $m_{12,34,14,32} > 5 \text{ GeV}$					
	$\Delta R(\ell, \ell') > 0.10 \ (0.20)$ for same-fla	vour (different-flavour) leptons in	-			
	the quad	lruplet				
QUADRUPLET	Select first surviving quadruplet	Select quadruplet with sn	nallest $\Delta m_{\ell\ell} = m_{12} - m_{34} $			
RANKING	from channels, in the order: 4μ ,					
	$2e2\mu$, $2\mu 2e$, $4e$					
Event	$115 \ GeV < m_4$	$\ell_{\ell} < 130 \ GeV$	$120 \ GeV < m_{4\ell} < 130 \ GeV$			
SELECTION		m_{34}/m_{34}	$u_{12} > 0.85$			
		Reject	event if:			
		$(m_{J/\Psi} - 0.25 \ GeV) < m_{12,34,14,32} < (m_{\Psi(2S)} + 0.30 \ GeV)$, or				
		$(m_{\Upsilon(1S)} - 0.70 \ GeV) < m_{12,34,14,32} < (m_{\Upsilon(3S)} + 0.75 \ GeV)$				
		$10 \ GeV < m_{12,34} < 64 \ GeV$	$0.88 \ GeV < m_{12,34} < 20 \ GeV$			
		$4e$ and 4μ channels:	No restriction on alternative			
		$5 \ GeV < m_{14,32} < 75 \ GeV$	pairing			

$H \rightarrow a^0 a^0 \& Z_D Z_D \rightarrow \ell \ell \ell \ell$ High Mass VRs

Elliot Reynolds

29

16

31

16

$H \rightarrow a^0 a^0 \& Z_D Z_D \rightarrow \ell \ell \ell \ell$ High Mass Event Displays $^{32}/_{16}$

ATLAS 2016-07-17 04:03:59 CEST source:3veXML 303943 3870771925 run;303943 ev;3670771925 lumiBiock:1071 Atlanti:

	$H \to ZX \to 4\ell$	$H \to XX \to 4\ell$	$H \to XX \to 4\mu$			
	$(15 \ GeV < m_X < 55 \ GeV)$	$(15 \ GeV < m_X < 60 \ GeV)$	$(1 \ GeV < m_X < 15 \ GeV)$			
Electrons	Dress	and with prompt photons within ΔR	= 0.1			
		$p_{\rm T} > 7 ~GeV$				
		$ \eta < 2.5$				
Muons	Dress	ed with prompt photons within ΔR	= 0.1			
		$p_{\rm T} > 5 \ GeV$				
		$ \eta < 2.7$				
Quadruplet	Three leading- $p_{\rm T}$ leptons satisfy $p_{\rm T} > 20$ GeV, 15 GeV, 10 GeV					
	$\Delta R > 0.1 \ (0.2) \text{ betw}$	veen SF (OF) leptons	-			
	$50 \ GeV < m_{12} < 106 \ GeV$	m_{34}/m_1	$_{2} > 0.85$			
	$12 \ GeV < m_{34} < 115 \ GeV$	$10 \ GeV < m_{12,34} < 64 \ GeV$	$0.88 \ GeV < m_{12,34} < 20 \ GeV$			
	$115 \ GeV < m_{4\ell} < 130 \ GeV$	$5 \ GeV < m_{14,32} < 75 \ GeV$ if $4e$				
	$m_{12,34,14,32} > 5 \text{ GeV}$	or 4μ				
		Reject event if either of:				
		$(m_{J/\psi} - 0.25 \ GeV) < m_{12,34,14,32} < (m_{\psi(2S)} + 0.30 \ GeV)$				
		$(m_{\Upsilon(1S)} - 0.70 \ GeV) < m_{12,34},$	$14,32 < (m_{\Upsilon(3S)} + 0.75 \ GeV)$			

33/16

$H \rightarrow ZZ_D \rightarrow \ell\ell\ell\ell\ell$ Backup Materials

	$H \to ZX \to 4\ell$	$H \to XX \to 4\ell$	$H \rightarrow XX \rightarrow 4\mu$			
	$(15 \ GeV < m_X < 55 \ GeV)$	$(15 \ GeV < m_X < 60 \ GeV)$	$(1 \ GeV < m_X < 15 \ GeV)$			
Quadruplet	- Require at least one quadruplet of	f leptons consisting of two pairs of s	ame-flavour opposite-sign leptons			
SELECTION	 Three leading-p_T leptons satisfyin 	$p_{\rm T} > 20 \text{ GeV}, 15 \text{ GeV}, 10 \text{ GeV}$				
	- At least three muons are required to be reconstructed by combining ID and MS tracks in the 4μ channel					
	 Select best quadruplet (per 	- Select best quadruplet (per Leptons in the quadruplet are responsible for firing at least one				
	channel) to be the one with the	trigger. In the case of multi-lepto	on triggers, all leptons of the trigger			
	(sub)leading dilepton mass	must match to lept	ons in the quadruplet			
	(second) closest to the Z mass					
	- 50 $GeV < m_{12} < 106 GeV$					
	- $12 \ GeV < m_{34} < 115 \ GeV$					
	- $m_{12,34,14,32} > 5 \text{ GeV}$					
	$\Delta R(\ell, \ell') > 0.10 \ (0.20)$ for same-fla	vour (different-flavour) leptons in	-			
	the quad	lruplet				
Quadruplet	Select first surviving quadruplet	Select quadruplet with sn	nallest $\Delta m_{\ell\ell} = m_{12} - m_{34} $			
RANKING	from channels, in the order: 4μ ,					
	$2e2\mu$, $2\mu 2e$, $4e$					
Event	$115 \ GeV < m_4$	$\ell_{\ell} < 130 \ GeV$	$120 \ GeV < m_{4\ell} < 130 \ GeV$			
SELECTION		m_{34}/m_{34}	$u_{12} > 0.85$			
		Reject	event if:			
		$(m_{J/\Psi} - 0.25 \ GeV) < m_{12,34,14,32} < (m_{\Psi(2S)} + 0.30 \ GeV),$ or				
		$(m_{\Upsilon(1S)} - 0.70 \ GeV) < m_{12,34,14,32} < (m_{\Upsilon(3S)} + 0.75 \ GeV)$				
		$10 \ GeV < m_{12,34} < 64 \ GeV$	$0.88 \ GeV < m_{12,34} < 20 \ GeV$			
		$4e$ and 4μ channels:	No restriction on alternative			
		$5 \ GeV < m_{14,32} < 75 \ GeV$	pairing			
		· · · · · · · · · · · · · · · · · · ·				

Process	$2\ell 2\mu$	$2\ell 2e$	Total
$H \to Z Z^* \to 4\ell$	34.3 ± 3.6	21.4 ± 3.0	55.7 ± 6.3
$ZZ^* \to 4\ell$	16.9 ± 1.2	9.0 ± 1.1	25.9 ± 2.0
Reducible background	2.1 ± 0.6	2.7 ± 0.7	4.8 ± 1.1
$VVV, t\bar{t} + V$	0.20 ± 0.05	0.20 ± 0.04	0.40 ± 0.06
Total expected	53.5 ± 4.3	33.3 ± 3.4	86.8 ± 7.5
Observed	65	37	102

	$H \to ZX \to 4\ell$	$H \rightarrow XX \rightarrow 4\ell$	$H \rightarrow XX \rightarrow 4\mu$		
	$(15 \ GeV < m_X < 55 \ GeV)$	$(15 \ GeV < m_X < 60 \ GeV)$	$(1 \ GeV < m_X < 15 \ GeV)$		
Electrons	Dress	sed with prompt photons within ΔR	= 0.1		
		$p_{\rm T} > 7 ~GeV$			
		$ \eta < 2.5$			
Muons	Dress	sed with prompt photons within ΔR	= 0.1		
		$p_T > 5 \ GeV$			
	$ \eta < 2.7$				
Quadruplet	Three leading	$-p_T$ leptons satisfy $p_T > 20$ GeV, 15	GeV, 10 GeV		
	$\Delta R > 0.1 \ (0.2) \text{ betw}$	veen SF (OF) leptons	-		
	$50 \ GeV < m_{12} < 106 \ GeV$	m_{34}/m_1	$_2 > 0.85$		
	$12 \ GeV < m_{34} < 115 \ GeV$	$10 \ GeV < m_{12,34} < 64 \ GeV$	$0.88 \ GeV < m_{12,34} < 20 \ GeV$		
	$115 \ GeV < m_{4\ell} < 130 \ GeV$	$5 \ GeV < m_{14,32} < 75 \ GeV$ if $4e$			
	$m_{12,34,14,32} > 5 \text{ GeV}$	or 4μ			
		Reject event if either of:			
		$(m_{J/\psi} - 0.25 \ GeV) < m_{12,34,14,32} < (m_{\psi(2S)} + 0.30 \ GeV)$			
		$ (m_{\Upsilon(1S)} - 0.70 \ GeV) < m_{12,34},$	$_{14,32} < (m_{\Upsilon(3S)} + 0.75 \ GeV)$		

$H \rightarrow ZZ_D \rightarrow \ell \ell \ell \ell \ell$ Model Independent Limits

38

16

$H \rightarrow a^0 a^0 \rightarrow \gamma \gamma j j$ Backup Materials

	Selec	ction		
L1 trigger	L1_2EM15VH			
Primary HLT trigger	HLT_g35_loose_g25_loose	HLT_2g22_tight		
Photon Selection	≥ 2 photons with $E_{\rm T} > 30 { m ~GeV}$ ≥ 1 photon with $E_{\rm T} > 40 { m ~GeV}$	≥ 2 photons with $E_{\rm T} > 27~{\rm GeV}$		
Jet Selection	≥ 4 jets, cent	ral or forward		
VBF Selection	$m_{jj}^{\rm VBF} > 500~{\rm GeV}~\&~{\rm VBF}$	Leading Jet $p_{\rm T} > 60~{\rm GeV}$		

$H ightarrow a^0 a^0 ightarrow \gamma \gamma j j$ Kinematic Distributions

40

16

$m_a \; [\text{GeV}]$	$m_{\gamma\gamma}$ regime	Efficiency $(\times 10^{-5})$			
		А	В	\mathbf{C}	D
20	1	$0.50\substack{+0.16\\-0.14}$	$1.2{\pm}0.4$	$3.9{\pm}1.1$	$6.2{\pm}1.8$
25	1	$0.67\substack{+0.27 \\ -0.33}$	$2.6^{+0.5}_{-0.6}$	$5.8 {\pm} 1.4$	15 ± 4
25	2	$0.67\substack{+0.27 \\ -0.33}$	$2.6^{+0.5}_{-0.6}$	$5.8 {\pm} 1.4$	15 ± 4
30	2	$1.22{\pm}0.34$	$3.3{\pm}0.9$	$7.6^{+1.4}_{-1.6}$	25^{+5}_{-6}
35	2	$1.8{\pm}1.1$	$2.7{\pm}1.2$	$9.3{\pm}2.6$	27 ± 6
35	3	$0.53^{+1.20}_{-0.24}$	$4.1 {\pm} 1.2$	$6.1^{+1.2}_{-1.6}$	31 ± 7
40	3	$1.2{\pm}0.4$	$3.3{\pm}1.0$	$7.9^{+1.7}_{-2.4}$	26 ± 6
45	3	$2.5{\pm}1.0$	$4.1 {\pm} 1.3$	$7.7^{+1.7}_{-2.0}$	19 ± 5
45	4	$2.2{\pm}0.9$	$4.4{\pm}1.4$	$5.9^{+1.5}_{-2.2}$	22 ± 5
50	4	$0.93{\pm}0.30$	$4.4{\pm}1.2$	$5.0^{+1.3}_{-1.0}$	24 ± 5
55	4	$0.37{\pm}0.11$	$3.3{\pm}0.9$	$5.4^{+1.3}_{-1.4}$	21 ± 5
55	5	$0.23{\pm}0.16$	$3.6{\pm}1.0$	$3.4{\pm}0.8$	24 ± 6
60	5	$0.77^{+0.32}_{-0.30}$	$3.9{\pm}1.0$	$4.9{\pm}1.4$	23 ± 6

$m_{\gamma\gamma}$ regime	$m_a [{\rm GeV}]$	$\mu_{ m S}$	$\mu_{ m bkg}$	$ au_{ m B}$	$ au_{ m C}$
1	20	-7 ± 18	11 ± 17	$0.5 {\pm} 0.4$	2.9 ± 3.1
2	30	8 ± 8	7 ± 6	$0.68{\pm}0.32$	4.3 ± 3.1
3	40	-30 ± 80	$60{\pm}70$	$0.35 {\pm} 0.19$	$0.67 {\pm} 0.33$
4	50	22 ± 28	16 ± 23	$0.5 {\pm} 0.4$	$0.9{\pm}1.0$
5	60	-290 ± 260	$340 {\pm} 340$	$0.21 {\pm} 0.05$	$0.24{\pm}0.05$

43	/	16

$m_{\gamma\gamma}$ regime	$m_a [\text{GeV}]$	$\mu_{ m S}$	$\sigma_H \times B(H \to aa \to \gamma \gamma gg) \text{ [pb]}$	$\frac{\sigma_H}{\sigma_{\rm SM}} \times B(H \to aa \to \gamma\gamma gg)$
1	20	$10.8(10.4^{+4.6}_{-3.1})$	$4.8(4.6^{+2.1}_{-1.4})$	$0.086(0.082^{+0.037}_{-0.025})$
1	25	$10.4(10.9^{+3.8}_{-2.5})$	$1.9(2.0^{+0.7}_{-0.5})$	$0.034(0.036^{+0.013}_{-0.008})$
2	25	$28(25^{+8}_{-6})$	$5.1(4.7^{+1.4}_{-1.1})$	$0.092(0.084^{+0.026}_{-0.019})$
2	30	$29(24^{+11}_{-6})$	$3.1(2.6^{+1.1}_{-0.7})$	$0.056(0.046^{+0.021}_{-0.012})$
2	35	$27(22^{+9}_{-6})$	$2.7(2.2^{+0.9}_{-0.6})$	$0.049(0.040^{+0.016}_{-0.011})$
3	35	$30(36^{+18}_{-9})$	$2.7(3.2^{+1.6}_{-0.8})$	$0.048(0.057^{+0.028}_{-0.014})$
3	40	$31(39^{+19}_{-12})$	$3.2(4.0^{+2.0}_{-1.2})$	$0.058(0.073^{+0.035}_{-0.022})$
3	45	$45(53^{+15}_{-20})$	$6.3(7.5^{+2.1}_{-2.8})$	$0.113(0.134^{+0.038}_{-0.050})$
4	45	$74(68^{+16}_{-15})$	$9.2(8.4^{+2.0}_{-1.9})$	$0.166(0.152^{+0.036}_{-0.034})$
4	50	$79(77^{+17}_{-16})$	$9.0(8.8^{+2.0}_{-1.8})$	$0.162(0.159^{+0.036}_{-0.032})$
4	55	$73(69^{+11}_{-10})$	$9.7(9.1^{+1.5}_{-1.2})$	$0.173(0.163^{+0.026}_{-0.022})$
5	55	$48(59^{+41}_{-19})$	$5.5(6.8^{+4.7}_{-2.1})$	$0.10(0.12^{+0.08}_{-0.04})$
5	60	$67(81^{+24}_{-31})$	$8.0(9.5^{+2.8}_{-3.6})$	$0.14(0.17^{+0.05}_{-0.07})$

			$m_{\gamma\gamma}$ regime		
Source of Uncert.	1	2	3	4	5
	$m_a = 20 \ GeV$	$m_a = 30 \ GeV$	$m_a = 40 \ GeV$	$m_a = 50 \ GeV$	$m_a = 60 \ GeV$
Statistical	0.73	0.51	0.89	1.13	0.92
Closure	0.44	0.27	0.39	0.64	0.89
Modelling	0.35	0.34	0.46	0.42	0.65
Jet	0.58	0.38	0.25	0.90	0.71
Photon	0.06	0.05	0.10	0.12	0.13
Lumi and Pile-up	0.06	0.04	0.27	0.14	0.32

$WH \rightarrow \ell \nu a^0 a^0 \rightarrow \ell \nu 4b$ Backup Materials

$WH \rightarrow \ell \nu a^0 a^0 \rightarrow \ell \nu 4b$ Kinematic Distributions (2/3)⁴⁶/₁₆

$WH \rightarrow \ell \nu a^0 a^0 \rightarrow \ell \nu 4b$ Background Breakdown

$WH \rightarrow \overline{\ell \nu a^0 a^0} \rightarrow \ell \nu 4b \ \overline{H_T} \ CRs$

49

16

Rare & BSM Higgs Decays

Process	(3j, 3b)	(4j, 3b)	(4j, 4b)
$t\bar{t} + light$	1089 ± 76	2940 ± 180	53 ± 16
$t\bar{t} + c\bar{c}$	70 ± 28	280 ± 110	21 ± 11
$t\bar{t} + b\bar{b}$	172 ± 55	610 ± 160	74 ± 15
$t\bar{t} + \gamma/W/Z$	0.8 ± 0.1	4 ± 1	0.4 ± 0.1
W + jets	93 ± 31	129 ± 40	2 ± 1
Z + jets	18 ± 12	14 ± 10	_
Single-top-quark	135 ± 13	208 ± 17	8 ± 1
Multijet	48 ± 20	67 ± 28	4 ± 2
Dibosons	4 ± 1	9 ± 1	0.6 ± 0.4
$t\bar{t} + H$	0.7 ± 0.1	4 ± 1	0.8 ± 0.2
Total	1640 ± 58	4270 ± 130	165 ± 15
Data	1646	4302	166
$WH, H \rightarrow 2a \rightarrow 4b$			
$m_a = 60 \ GeV$	10 ± 2	9 ± 1	3 ± 1
$m_a = 40 \ GeV$	11 ± 2	10 ± 2	2 ± 1
$m_a = 20 \ GeV$	6 ± 1	5 ± 1	0.7 ± 0.2

Systematic uncertainty [%]	WH,H ightarrow 2a ightarrow 4b	$t\bar{t} + light$	$t\bar{t}+c\bar{c}$	$t\bar{t}+b\bar{b}$
Luminosity	4	4	4	4
Lepton efficiencies	1	1	1	1
Jet efficiencies	6	4	4	4
Jet energy resolution	5	1	3	1
Jet energy scale	4	2	4	3
<i>b</i> -tagging efficiency	17	5	5	9
<i>c</i> -tagging efficiency	1	6	12	4
Light-jet-tagging efficiency	2	29	5	3
Theoretical cross sections	-	5	5	5
$t\bar{t}$: modelling	—	6	45	26
$t\bar{t}$ +HF: normalisation	-	-	35	18
$t\bar{t}$ +HF: modelling	—	—	_	5
Signal modelling	7	—	_	_
Total	21	31	54	21