Measurements and searches of Higgs boson decays to two fermions

Tatsuya Masubuchi on behalf of the ATLAS collaboration ICEPP, The University of Tokyo

CIPANP 2018, Palm Springs

東京大学 素粒子物理国際研究センター International Center for Elementary Particle Physics The University of Tokyo

Higgs Decay to Fermion

- Higgs boson properties have been measured precisely using bosonic decay modes (γγ, ZZ→4I, WW→IvIv)
 - Higgs mass ~125 GeV (0.2% precision)
 - Spin/CP, differential cross section
- Higgs to fermion decay is still mysterious part in the Higgs sector
- Yukawa coupling is proportional to fermion mass

Deviation pattern of coupling (up/down, lepton, quark) provides rich information of BSM physics

Higgs Production for Fermion Decay

3

Analysis status of two fermion decay mode at ATLAS

Decay mode	Production process	Run2	Run1	Reference
	VH	36.1fb ⁻¹	25fb ⁻¹	<u>JHEP 12 (2017) 024</u>
מעקח	VBF(+γ)	12.6fb ⁻¹	20fb ⁻¹	JHEP 11 (2016) 112, ATLAS-CONF-2016-063
Н→тт	ggF, VBF		20-25fb ⁻¹	JHEP 04 (2015) 117, Phys. Rev. D 93 (2016) 092005
Н→сс	VH	36.1fb ⁻¹		<u>Phys. Rev. Lett. 120 (2018) 211802</u>
Н→µµ	ggF, VBF	36fb ⁻¹	25fb ⁻¹	Phys. Rev. Lett. 119 (2017) 051802
H→J/ψγ	Inclusive		20fb ⁻¹	<u>Phys. Rev. Lett. 114 (2015) 121801</u>
Η→Φγ,ργ	Inclusive	36fb ⁻¹		arXiv:1712.02758 (Submitted to JHEP)

- ✓ Focus on the results using Run2 data
- \checkmark Meson+ γ modes are covered by Elliot Reynolds

JHEP 12 (2017) 024

Analysis Overview H→bb decay

- VH production is "golden" channel
 - Lepton(e, μ)/MET from vector boson decay can be used for trigger
 - Optimize selection for each channel (0/1/2lepton)
 - 2 b-tagged jets requirement
 - High- p_T^V region enhances signal-to-background ratio

Keys of H→bb decay

- m_{bb} resolution and multi-variate analysis(BDT) are keys
- Muon-in-jet correction : Add momentum of muon inside b-jet
- PtReco correction : Apply correction factor accounting for missing neutrino energy and out-of-cone effect based on MC response
- Kinematic Fit (2lepton) : Correct b-jet energy by constraint of Ilbb balance (no intrinsic missing E_T)

	Variable	0-lepton	1-lepton	2-lepton
	p_{T}^{V}		×	×
	$E_{\rm T}^{\rm miss}$	×	×	×
	$p_{\mathrm{T}}^{b_1^-}$	х	×	×
	$p_{\mathrm{T}}^{ar{b}_2}$	х	×	×
	m_{bb}	Х	Х	Х
	$\Delta R(b_1, b_2)$	Х	Х	Х
	$ \Delta\eta(b_1,b_2) $	×		
	$\Delta \phi(V,bb)$	×	×	×
	$ \Delta\eta(V,bb) $			×
	$m_{ m eff}$	Х		
	$\min_{W} [\Delta \phi(\ell, b)]$		×	
	$m_{ m T}^{\prime\prime}$		×	
	$m_{\ell\ell}$			×
	$m_{\rm top}$		×	
	$ \Delta Y(V,bb) $	0-1	X	ta
	jet ₂	Only	vents	
	p_{T}^{-3}	×	×	×
	m_{bbj}	X	×	×
100 80 60 40 20	ATLAS $\sqrt{s} = 13 \text{ TeV}$, 36.1 fb ⁻ 2 leptons, 2 jets, 2 b $p_T^{\nu} \ge 150 \text{ GeV}$	-tags	Data VH → Vbb (µ= Diboson Z+(bb,bc,cc,bl tt Uncertainty Pre-fit backgro SM VH → Vbb	n
	50 100 150 2) 350 400 m _t	450 500 _{bb} [GeV]
т		4:00		

Fit Scheme and Analysis Validation $\mu = \frac{(\sigma \cdot BR)_{meas}}{(\sigma \cdot BR)_{SM}}$

- Fit 8 signal regions and W+jets (1lepton) and ttbar control regions (2lepton) simultaneously
- Validate fit scheme using SM diboson VZ(\rightarrow bb) : $\mu_{VZ}^{b\overline{b}} = 1.11^{+0.25}_{-0.22}$ (Obs. 5.8 σ)
- After validation of background modeling, VH→bb signal regions are opened

CIPANP2018 at Palm Springs

2018/5/29

Data

Diboson

Uncertainty

Dijet mass analysis

100 120 140 160 180 200

VH \rightarrow Vbb (µ=1.30)

Evidence for H→bb Decay

• Run2(36.1fb⁻¹)+ Run1(4.7fb⁻¹+20.3fb⁻¹) combination

Di-jet mass analysis (Fit to m_{bb}) gives consistent results with MVA

sub.)

Events / 10 GeV (Weighted, backgr.

12⊢ *ATLAS*

10⊢

8

 $\sqrt{s} = 13 \text{ TeV}. 36.1 \text{ fb}^{-1}$

0+1+2 leptons

2+3 jets, 2 b-tags

Weighted by S/B

60

40

80

Run2 only : $\mu(m_{bb}) = 1.30 \text{ vs } \mu(MVA)=1.20$

8

m_{bb} [GeV]

Search for VBF H→bb

- Using VBF topology is quite challenging for $H \rightarrow bb$ search
 - Difficult to trigger bb+VBF(jj) topology due to high rate
 - Suffers from huge QCD multi-jet background
- A high energy photon requirement greatly reduce multi-jet background

- High- p_T photon signature for efficient trigger
 - $p_T(\gamma)$ >25 GeV, 4jets with $p_T(jet)$ >35 GeV, m_{jj} > 700 GeV
- Destructive interference between ISR and FSR photon emission diagram further reduces multi-jet background (more than one order w.r.t. α_{EW})
- Event preselection : p_T(γ)>30 GeV, 4jets p_T(jets)>40 GeV,2 b-jets(77% eff), m_{ii} > 800 GeV

ATLAS-CONF-2016-063

VBF H→bb Results

- Apply BDT to discriminate multi-jet background with VBF topology (high m_{jj} , $\Delta \eta_{jj}$) Forward jets
 - Information of Higgs decay product is not used \rightarrow Less bias on m_{bb} shape
- m_{bb} shape fitting after BDT categorization
 - Non-resonant background shape : 2nd order polynomial function
 - Resonant H→bb signal, Z→bb : Crystal Ball

photo

b-jets

arXiv:1802.04329

Search for $H \rightarrow cc$ Decay

- Direct search for Y_c (BR(H \rightarrow cc) ~2.9%)
- Dedicated c-tagging strategy has been developed
 - c-tagging is challenging (shorter lifetimes and lower track multiplicity)
 - Construct two multivariate discriminants (**c** vs **b**, **c** vs light) $\frac{1}{5}$
 - Eff(c) = 41%, Eff(b) = 25%, Eff(light) = 5%
- Search for $ZH \rightarrow IIcc$ topology : Similar selection to ZH→llbb analysis but **1 or 2 c-tagging requirement**
- Fit to m_{cc} distribution

Event Selection/Categorization

Categorization	At least 2 jets	
c-tagging	1 or 2 c-tagged jets	1 or 2 c-tagged jets
₽ _T ^V	75 < p _T ^V <150 GeV	150 < p _T ^V
ΔR_{cc}	< 2.2	< 1.5 (150 <p<sub>T^V<200), <1.3 (200<p<sub>T^V)</p<sub></p<sub>

Jet p₊ [GeV]

H→cc Results

 Validate analysis procedure with ZZ→IIcc, ZW→II(cs/cd) events

> $\mu_{ZV} = 0.6^{+0.5}_{-0.4}$ Observed Significance 1.4 σ (exp. 2.2 σ)

• Upper limit on $\sigma(pp \rightarrow ZH) \times BR(H \rightarrow cc) @ 95\%$ C.L. **Observed limit 2.7 pb Expected 3.9**^{+2.1}_{-1.1}**pb (SM prediction ~2.6 × 10**⁻²**pb)**

Dominant systematic source

Source	$\sigma/\sigma_{ m tot}$
Statistical	49%
Floating $Z + jets$ normalization	31%
Systematic	87%
Flavor tagging	73%
Background modeling	47%
Lepton, jet and luminosity	28%
Signal modeling	28%
MC statistical	6%

Analysis and c-tagging improvement is on-going for the next round of Run2 analysis

Search for $H \rightarrow \mu \mu$

- Direct search for Y_{μ}
 - Extremely small signal yield : $BR(H \rightarrow \mu\mu) \sim 0.022\%$
 - Narrow $m_{\mu\mu}$ peak ($\sigma(m_H)$ ~2-3%)
- Event selection : 2 OS muons, MET < 80 GeV, b-jet veto
- Dominant background : Drell-Yan $(Z \rightarrow \mu \mu)$
- Categorization
 - **VBF-enrich (BDT classification)** : m_{jj} , $\Delta \eta_{jj}$, $p_T^{\mu\mu}$, ΔR_{jj} , $p_T^{\mu\mu jj}$
 - ggF-enrich : $p_T^{\mu\mu}$ and muon η
 - → Extract high S/B region (8 categories)

	S	B	S/\sqrt{B}	FWHM	Data
Central low $p_{\rm T}^{\mu\mu}$	11	8000	0.12	$5.6 \mathrm{GeV}$	7885
Non-central low $p_{\rm T}^{\mu\mu}$	32	38000	0.16	$7.0~{\rm GeV}$	38777
Central medium $p_{\rm T}^{\bar{\mu}\mu}$	23	6400	0.29	$5.7~{\rm GeV}$	6585
Non-central medium $p_{\rm T}^{\mu\mu}$	66	31000	0.37	$7.1~{\rm GeV}$	31291
Central high $p_{\rm T}^{\mu\mu}$	16	3300	0.28	$6.3~{\rm GeV}$	3160
Non-central high $p_{\rm T}^{\mu\mu}$	40	13000	0.35	$7.7~{ m GeV}$	12829
VBF loose	3.4	260	0.21	$7.6~{\rm GeV}$	274
VBF tight	3.4	78	0.38	$7.5~{\rm GeV}$	79

VBF tight : S/B ~0.04

Phys. Rev. Lett. 119 (2017) 051802

2018/5/29

H→µµ Results

- Fit to $m_{\mu\mu}$ (110 < $m_{\mu\mu}$ < 160 GeV) using analytic function
 - Signal model

$$P_{\rm S}(m_{\mu\mu}) = f_{\rm CB} \times {\rm CB}(m_{\mu\mu}, m_{\rm CB}, \sigma_{\rm CB}, \alpha, n) + (1 - f_{\rm CB}) \times {\rm GS}(m_{\mu\mu}, m_{\rm GS}, \sigma_{\rm GS}^{\rm S})$$

2018/5/29

CIPANP2018 at Palm Springs

Summary

- Higgs boson interaction with each fermion needs to be confirmed experimentally
 - Observation of H→TT decay in Run1
 - Evidence for H→bb decay in Run2
 - ➔ No significant deviation from the SM, so far..
 - ➔ Now entering the measurement stage
- Coupling measurement of Higgs to 2nd gen.
 fermion just at the beginning of a long journey
- More data opens up new observations of coupling to 2nd gen.!!
 - LHC ATLAS experiment accumulating much more data in Run2 (~150fb⁻¹ in Run2)
 - 300fb⁻¹ in Run3 and 3000fb⁻¹ in HL-LHC

Stay Tuned!!

Evidence for H→bb decay mode

• Validation with VZ diboson and m_{bb} analysis in Run2 analysis

Observed significance 5.8σ (exp. 5.3σ)

VH→bb background modeling

Fit 8 signal regions and control regions simultaneously
 → constrain background modeling uncertainty

2018/5/29

VH \rightarrow bb m_{bb} distribution in m_{bb} analysis

Selection

 $E_{\rm T}^{\rm miss}/\sqrt{S_{\rm T}}$

 m_{T}^W

- Dijet mass analysis requires tighter event selection than MVA analysis
- Divide p_{T}^{V} category into 150-200 GeV and 200- GeV
- ΔR cut depending on $p_T{}^V$ region

Channel

1-lepton

< 120 GeV

2-lepton

 $< 3.5\sqrt{\text{GeV}}$

0-lepton

CIPANP2018 at Palm Springs

2018/5/29

VH→bb Systematic Uncertainty

• Impact on μ measurement in VH \rightarrow bb analysis in Run2 36.1fb⁻¹

 $\mu = 1.20^{+0.24}_{-0.23}(stat.)^{+0.34}_{-0.28}(syst.)$

- Dominant systematic source
 - Flavor tagging uncertainty : comes from efficiency calibration, data/MC scale factor
 - Signal uncertainty : dominant source is underlying event/parton shower systematic (Generator difference)
 - Modeling uncertainty : W-p_T shape modeling in 1 lepton, ttbar m_{bb} shape modeling in 2 lepton, single top Wt channel (interference modeling)
 - MC statistics...

Source of un	σ_{μ}			
Total	0.39			
Statistical	0.24			
Systematic	Systematic			
Experimental uncertainties				
Jets		0.03		
$E_{\mathrm{T}}^{\mathrm{miss}}$		0.03		
Leptons		0.01		
	b-jets	0.09		
b-tagging	c-jets	0.04		
	light jets	0.04		
	extrapolation	0.01		
Pile-up		0.01		
Luminosity		0.04		
Theoretical and modelling uncertainties				
Signal		0.17		
C				
Floating nor	0.07			
Z + jets		0.07		
W + jets		0.07		
tt	0.07			
Single top q	uark	0.08		
Diboson	0.02			
Multijet 0.02				
j = •		0.02		

0.13

MC statistical

VBF H→bb

• m_{bb} distribution in low/medium BDT regions

VBF H→bb

- Systematic uncertainty
 - Background modeling uncertainties are dominant source (can be improved with higher stat data)
 - H+ γ theory modeling
 - Jet energy calibration

Uncertainty source	Uncertainty $\Delta \mu$
Non-resonant background uncertainty in medium-BDT region	0.22
Non-resonant background uncertainty in high-BDT region	0.21
Non-resonant background uncertainty in low-BDT region	0.17
Parton shower uncertainty on $H + \gamma$ acceptance	0.16
QCD scale uncertainty on $H + \gamma$ cross section	0.13
Jet energy uncertainty from calibration across η	0.10
Jet energy uncertainty from flavour composition in calibration	0.09
Integrated luminosity uncertainty	0.08

Search for VH→cc

24

Search for $H \rightarrow \mu \mu$

	ggF	VBF	VH
Central low $p_{\rm T}^{\mu\mu}$	11	0.1	0.0
Non-central low $p_{\rm T}^{\mu\mu}$	31	0.3	0.2
Central medium $p_{\rm T}^{\bar{\mu}\mu}$	23	0.7	0.3
Non-central medium $p_{\rm T}^{\mu\mu}$	63	2.0	1.2
Central high $p_{\rm T}^{\mu\mu}$	13	1.8	0.9
Non-central high $p_{\rm T}^{\mu\mu}$	32	4.6	2.8
VBF loose	1.5	1.8	0.0
VBF tight	0.9	2.6	0.0

25

Search for $H \rightarrow \mu\mu$

- Categorization in muon $\boldsymbol{\eta}$
 - Central : Both muon with $|\eta| < 1.05$
 - Non-central : The rest (either of muons with |η|> 1.05)
 - High- p_T category has worse resolution
 - VBF category does not separate due to low stat

