

ATLAS Searches for Diboson Resonances

Inês Ochoa, on behalf of the ATLAS Collaboration CIPANP2018

What are we looking for?

- A solution to the **naturalness problem**:
 - New physics at the TeV energy scale, reachable at the LHC.
 - New resonances can generally be expected to couple to massive bosons: W/Z and Higgs.
 - Presenting results with minimal model dependence is of particular importance.
 - Can translate experimental limits into results for different models.

Motivation for diboson final states

New physics

- There are many well-motivated extensions to the Standard Model that predict new resonances decaying to boson pairs (W/Z/H/y), with different sets of properties.
- Rich phenomenology, from e.g. Composite Higgs to Extra Dimensions.

- Results are interpreted using different benchmark models, assuming narrow width approximation:
 - Spin-0: extended Higgs sector (e.g. 2HDM), gluon-gluon and vector boson fusion.
 - Spin-1: heavy vector triplets HVT (W', Z')
 - Spin-2: Kaluza-Klein graviton from bulk Randall-Sundrum model

Heavy Vector Triplets:

- Simplified model with additional SU(2) vector triplet.
- Small set of parameters: couplings to fermions, bosons and resonance mass.
- Production via Drell-Yan or vector boson fusion

JHEP09(2014)060

"bulk" KK gravitons:

- Extension of KK graviton in RS1 framework with SM particles extending into the "bulk".
- Couplings to light fermions suppressed.
- Gluon-gluon fusion dominant production channel.

PhysRevD.76.036006

•

ATLAS searches in diboson final states

- In this talk: recent ATLAS searches, with focus on hadronic decay channels.
 - W/Z/H+y→qqy: <u>arXiv:1805.01908</u> NEW RESULT •
 - WZ/WW/ZZ→qqqq: <u>Phys. Lett. B 777 (2017) 91</u> ٠
 - VH→qqbb: Phys. Lett. B 774 (2017) 494 ٠
 - Y→XH→qqbb: <u>Phys. Lett. B 779 (2018) 24</u> ٠

Common search strategy:

- Scanning of invariant mass distributions of diboson systems for evidence of a narrow resonant excess.
- Large range of resonance masses covered: from 200 GeV to 6.8 TeV: boost of decay products will depend on the mass.
- Two general methods for background estimation.

Ζ

•

Reconstructing W/Z/H hadronic decays

- Jet trimming of large-R jets to reduce contributions from underlying event and pile-up.
- W/Z tagging via a combination of p_T-dependent cuts on the calibrated, jet mass and $D_{2^{\beta=1}}$ variable for identifying jets with two-prong substructures.
- Higgs tagging via jet mass cuts and b-tagging of associated track-jets.

COLUMBIA UNIVERSITY IN THE CITY OF NEW YORK

W/H/Z+γ searches (I)

- Strategy: one large-R jet and one photon: event triggered by photon candidates with p_T > 140 GeV.
- Event categorization to improve signal sensitivity.
- E.g. Z_y, defined by (double) b-tagging, D₂ and jet mass of large-R jet. Additional cut on n_{tracks} associated with jet for rejection of gluon-initiated jets.

COLUMBIA UNIVERSITY

W/H/Z+y searches (II) NEW RESULT

- Main backgrounds: SM γ + jet production, smaller contributions from γ + top, γ + V.
- Background model: $B(m_{J\gamma}; \mathbf{p}) = (1 x)^{p_1} x^{p_2 + p_3 \log x}$ $x = m_{J\gamma} / \sqrt{s}$
- Unbinned fits of the $m_{J_{\mbox{\scriptsize V}}}$ distribution performed in each category, in range 800 GeV up to 7 TeV.

W/H/Z+y searches (III) NEW RESULT

- Largest uncertainties are statistical, followed by spurious signal uncertainties (Vy). For Hy, large impact also from b-tagging efficiencies.
- Results: no significant deviations found. Crosssection x branching ratio limits derived combining signal regions, for Zy (different spin and production hypotheses), Wy and Hy production.

— Observed ---- Expected Median

5

6

Expected ±1 o

Expected ±2 o

 10^{3}

ATLAS

 $10^2 = \sqrt{s} = 13 \text{ TeV}, 36.1 \text{ fb}^{-1}$

2

3

 $gg \rightarrow X \rightarrow Z\gamma$, Spin(X)=0

B [fb]

95% CL limit on

10⁻¹

VV→qqqq search (I)

dn

- Two large-R jets, W/Z tagging @ 50% efficiency and cut on n_{tracks} associated with jets.
- Multijet processes dominate background.
- Binned maximum-likelihood fit to observed m_{JJ} spectrum assuming a smoothly falling distribution:

$$\frac{drv}{dx} = p_1(1-x)^{p_2-\xi p_3} x^{-p_3}, x = m_{JJ}/\sqrt{s}$$

$$\int_{0}^{1} \int_{0}^{10^6} \int_{0}^{10^6 - 47LAS} \int_{0}^$$

COLUMBIA UNIVERSITY IN THE CITY OF NEW YORK

VV→qqqq search (II)

- **Results:** data compatible with SM backgrounds.
- Approximately 20% of events included in all three regions.

Model A: comparable BRs to fermions and bosons.

Model B: couplings to fermions suppressed.

- $M_{V'}$ exclusion in 1.2-3.1 (1.2-3.5) TeV for HVT model A (B).
- G_{KK} exclusion in range 1.3 1.6 TeV in bulk RS model with $k/M_{Pl} = 1$.

Upper limits set on $\sigma \times B$ of 9.7 fb at m(Scalar) = 2 TeV and 3.5 fb at m(Scalar) = 3 TeV.

VH→qqbb search (I)

- Two large-R jets required in the event: higher mass jet is assigned as Higgs candidate, the other as W/Z.
- Multijet QCD processes are the main
 background (>90%). Data-driven estimation:
 template from region with 0-tags,
 normalization and corrections from highmass sidebands of the Higgs candidate.

$VH \rightarrow qqbb search (II)$

- Largest experimental uncertainties from jet mass resolution, jet energy scale and b-tagging efficiencies.
- **Results:** largest excess at a mass of ~3 TeV with a local (global) significance of 3.3 (2.1) σ .
- Cross-section limits derived for W' and Z' production. Exclusions for HVT Model B (suppressed couplings to fermions):
 - $m_{w'}$ < 2.5 TeV and $m_{Z'}$ < 2.6 TeV
- WH cross-section limits and signal regions shown in backup slides. Note: WH/ZH overlap by ~60%.

10

 10^{-1}

10⁻²

10

↑ 10⁻² Ñ

a_10⁻³

1500

2000

2500

3000

3500 m_{7'} [GeV]

 \rightarrow WH) × B(H \rightarrow bb+cc) [pb]

. ^

dd)o 0-3

Other hadronic searches: $Y \rightarrow XH \rightarrow qqbb$

0.40 0.35 0.35 0.30 0.00

0.30 – 24 0.25 S

0.20

0.15

0.10

0.05

0.00

1000

ATLAS Simulation

800

600

- A search for heavy resonances decaying into a ٠ Higgs boson and a new particle (X).
- Two-dimensional phase space of Y resonance ٠ mass values between 1 and 4 TeV, and X masses from 50 to 1000 GeV.
- Similar strategy to VH search. ٠

m(Y) [TeV]

3.5

3.0

2.5

2.0

1.5

1.0

2-tag

200

400

Moving forward...

COLUMBIA UNIVERSITY IN THE CITY OF NEW YORK

14

- Results shown correspond to 2015+2016 data, with an integrated luminosity of 36.1 fb⁻¹.
- 2017 data will more than double the integrated luminosity and more collisions are currently taking place, with the expected Run II luminosity to reach 140 fb⁻¹.
- By continually improving reconstruction and analyses techniques we can get the most out of the data we have:
 - **New techniques:** developments in b-tagging and jet reconstruction (e.g. combining tracker and calorimeter information).
 - **Statistical combinations** of analyses targeting different decay modes, providing stronger constraints on particular models.

Summary

- Diboson final states are a powerful tool to look for new physics.
 - Latest ATLAS Run II results shown today, using 36.1 fb⁻¹ of 2015+2016 data.
 - Motivated by multiple models to probe the TeV scale.
 - Taking advantage of advanced analysis techniques to maximize search sensitivity.
 - There are new searches on the pipeline, more data to analyze and more data rolling in...

Stay tuned for more LHC data!

A high mass event from the all-hadronic VV analysis:

m_{VV} = 1.8 TeV

A high mass event from the all-hadronic VV analysis:

 $m_{4j} = 1.0 \text{ TeV}$

Backup

COLUMBIA UNIVERSITY IN THE CITY OF NEW YORK

Inês Ochoa, CIPANP2018

Jet substructure

- The D₂^{β=1} variable is useful in identifying jets with two-prong substructures.
- Defined from n-point energy correlation functions:

$$\begin{split} E_{\mathrm{CF1}}(\beta) &= \sum_{i \in J} p_{\mathrm{T}_i}, \\ E_{\mathrm{CF2}}(\beta) &= \sum_{i < j \in J} p_{\mathrm{T}_i} p_{\mathrm{T}_j} \left(\Delta R_{ij} \right)^{\beta}, \\ E_{\mathrm{CF3}}(\beta) &= \sum_{i < j < k \in J} p_{\mathrm{T}_i} p_{\mathrm{T}_j} p_{\mathrm{T}_k} \left(\Delta R_{ij} \Delta R_{ik} \Delta R_{jk} \right)^{\beta}. \end{split}$$

$$D_2^{\beta=1} = E_{\rm CF3} \left(\frac{E_{\rm CF1}}{E_{\rm CF2}}\right)^3$$

"Combined" jet mass

• The jet mass resolution is further improved by combining calorimeter and tracking information:

$$m_J \equiv w_{\text{calo}} \times m_J^{\text{calo}} + w_{\text{track}} \times \left(m_J^{\text{track}} \frac{p_{\text{T}}^{\text{calo}}}{p_{\text{T}}^{\text{track}}} \right)$$

- ω_{calo} and ω_{track} are inversely proportional to the square of the resolution of each mass term and are optimized to minimize the combined jet mass resolution.
- Resolution is improved especially at high jet p_T, due to the coarser angular resolution of the calorimeter.
- For Higgs boson reconstruction in the bb decay channel, the mass resolution can also be improved by correcting for semi-leptonic decays of the b-hadrons.

COLUMBIA UNIVERSITY

IN THE CITY OF NEW YORK

19

b-tagging

- Crucial for reconstructing Higgs to bb-bar decays but also for rejecting top backgrounds.
- A b-hadron decay in the detector provides a measurable displaced secondary vertex.
- A multivariate tagging algorithm combines information from vertexing and impact parameter tagging algorithms to a set of tracks associated to a jet/track-jet, in order to identify jets containing b-hadrons.

Vy searches

Normalized to unity

Normalized to unity

COLUMBIA UNIVERSITY IN THE CITY OF NEW YORK

Vy searches

Systematic uncertainties on signal

	Impact on normalization and efficiency [%]
Luminosity	2.1
Jet energy scale	2-6
Photon identification and isolation	0.5 - 1.5
Flavor tagging	10-20
$n_{\rm trk}$ associated with the jet	6
Jet mass resolution	3–6
scale and resolution	< 1
Pileup modeling	1 - 2
	Impact on signal peak position [%]
Jet energy and mass scale	1-3
Photon energy scale	< 0.5
	Impact on signal peak resolution $[\%]$
Jet energy resolution	$5 (m_X < 2.5 \text{ TeV}) - 15 (m_X > 2.5 \text{ TeV})$
Photon energy resolution	1 - 3
	Impact on acceptance [%]
PDF	2–12
Parton shower	2

• Event yields

Selection	Event yield in each category $(> 1 \text{ TeV})$					
	Baseline	BTAG	D2	VMASS	ELSE	
$Z\gamma$ search	$60,\!237$	25	784	5,569	$53,\!859$	
$W\gamma$ search	$60,\!237$		661	$5,\!216$	$54,\!360$	
$H\gamma$ search	$60,\!237$	59				

VV→qqqq search

COLUMBIA UNIVERSITY IN THE CITY OF NEW YORK

VV→qqqq search

VH→qqbb search

Higgs boson candidate mass [GeV]

$Y \rightarrow XH \rightarrow qqbb$ search

