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Presenter Notes
Presentation Notes
Do not be too nervous, motivate my audience. More excitement.-Add more background and knowledge for the general audience, reduce some slides.
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Presenter Notes
Presentation Notes
Professional microscopist. How to lead and support their projects…The agencies, collaborations/labs I have been worked with. Mention what you have been working with. Using Laser Cursor. I have worked with industry, academia and national labs, multiple materials applications.
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Upgrade advanced microscopy for materials science characterization from 
human approach to machine learning approach.

Goal

Spurgeon, S. R., Ophus, C., Jones, 
L., Petford-Long, A., Kalinin, S. V., 
Olszta, M. J., ... & Taheri, M. L. 
(2021). Towards data-driven next-
generation transmission electron 
microscopy. Nature materials, 20(3), 
274-279.

Rapid microscopy data increase!

Presenter Notes
Presentation Notes
a, Effective maximum microscope data-production rates by year, showing the rapid increase associated with better detector technologies. Estimates are constrained by the overhead associated with processing and transfer of data. b, Present and emerging microscopy analysis workflows harnessing new methods of data collection and interpretation.
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1. Improve Visibility.

2.Reveal Chemical Segregation.

3.Large-scale mapping.

Cases

SCAN ME!

Presenter Notes
Presentation Notes
a, Effective maximum microscope data-production rates by year, showing the rapid increase associated with better detector technologies. Estimates are constrained by the overhead associated with processing and transfer of data. b, Present and emerging microscopy analysis workflows harnessing new methods of data collection and interpretation.
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Modern Electron Microscopy for High-burnup Fuels

Grain 
restructuring 
in the HBS 

High-burnup 
structure (HBS)

Fission products:

chemically similar 
multiphase 
nanoprecipitate as 
compositionally 
complex non-
equilibrium oxides:

Close to each other
in the X-ray spectrum.



66 FAMU-FSU COE MagLab 2023 July 12FAMU-FSU
College of Engineering

Machine-learning Enhanced High-throughput X-ray Spectrum 
Image (XSI) Mapping

𝐼𝐼 𝑥𝑥,𝑦𝑦|𝐸𝐸 → 𝐷𝐷𝑛𝑛×𝑚𝑚

each pixel 
location (x; y)

�𝐷𝐷 = 𝐺𝐺𝐺𝐺𝐺𝐺

photon counting data, 
the noise is 
Poissonian.

energy bin 
E

�𝐷𝐷 = 𝑈𝑈�𝑉𝑉𝑇𝑇 = 𝐴̂𝐴𝑆̂𝑆𝑇𝑇 𝐷𝐷 = 𝐴𝐴𝑆𝑆𝑇𝑇 = 𝑇𝑇𝑃𝑃𝑇𝑇 𝐷𝐷 = 𝑇𝑇𝑇𝑇 𝑅𝑅−1𝑃𝑃 𝑇𝑇 = �𝑇𝑇 �𝑃𝑃𝑇𝑇

Couple with “MAPS” software by Thermo Fisher Scientific

Keenan, M. R. (2007). Multivariate analysis of spectral 
images composed of count data. Techniques and 
applications of hyperspectral image analysis, 89-126.

𝑛𝑛: 𝑥𝑥 × 𝑦𝑦: total pixels
𝑚𝑚: energy channels

homoscedastic heteroscedastic

1. Scaling

Keenan, M. R., & Kotula, P. G. 
(2004). Optimal scaling of TOF-
SIMS spectrum-images prior to 
multivariate statistical 
analysis. Applied Surface 
Science, 231, 240-244.

2. Singular value decomposition 
(SVD)/ Principal component 
analysis (PCA)

Stewart, G. W. (1993). On the early history of the singular 
value decomposition. SIAM review, 35(4), 551-566.

3. The “fPCA” (factor-
PCA) algorithm 

https://www.gatan.com/techniques/
spectrum-imaging

4. VARIMAX matrix rotation

Presenter Notes
Presentation Notes
X-ray mapping in scanning or scanning-transmission electron microscopy (SEM. Poisson-noise-scaled space,
re-orthogonalized factor model-fPCA method

or STEM) using energy dispersive X-ray spectroscopy (EDS) has long been the.        Sparse data-matrix G diagnal
primary tool to examine elemental distributions in materials at the nanometer
to micrometer scale [1, 2]. In the last few years, large-area high-throughput
silicon drift detector (SDD) technology replaced older technologies, allowing
high count rates to be acquired in X-ray mapping [3]. Equally importantly, the
data acquisition paradigm has moved to X-ray spectrum imaging (XSI), where
instead of simply recording maps of intensities of particular X-rays’ intensity
vs position, instead, a full spectrum at each pixel is stored [4, 5, 6, 7]. XSI
provides a rich datacube that is amenable to sophisticated post processing. For
instance, curve fitting could be applied at each pixel to subtract background and
deconvolve overlaps, if signal-to-noise is high enough. More interestingly, data
analytics methods—sometimes called multivariate statistical analysis (MVSA),
data mining, machine learning, etc.—can be applied to the rich data of the XSI,
allowing regions with different elemental makeups to be identified by unbiased
algorithms, often finding details that would be invisible to a human analyst [8,
9, 10].
Automated mapping software, in which large regions can be interrogated
by computer-controlled stage motion to acquire montages of XSIs, is also a
relatively recent advance. Although this provides very large datasets while
maintaining fine pixel pitch, two problems are apparent. One, huge amounts of
data are present, spanning multiple orders of magnitude of spatial scale, and are
difficult for the human analyst to interrogate comprehensively. Second, larger
areas will be mapped by reducing the time per tile (at a constant total time), so
signal to noise may be degraded, which can hide lower-intensity features under
the noise floor.
Here, we combine these two advances: large montages of XSIs are acquired
from two engineering materials, (1) a carbon-extraction replica from
an additively manufactured ferritic-martensitic creep resistant Grade-91 stainless
steel, showing multiple nanoprecipitates populations and (2) an additivelymanufactured
aluminum alloy containing several higher-atomic-number phases.
These montages contain either 10 10 (nanoprecipitate) or 5 5 (aluminum) individual
XSI “tiles.” Therefore, the datasizes of these datasets are in the terabyte
order. For instance, the nanoprecipitates datasets were acquired at 1024 1024
pixels  4096 energy channels, meaning there are about 4 billion elements in
each tile. If the data is stored as a single-precision float (4 bytes), then each
tile is 16 Gb of data. For 10 10 tiles, this is 1.6 Tb of data. However, the
XSI datasets are sparse: that is, most of the data elements are, in fact, zero
(no counts). Sparsity provides an opportunity to leverage highly optimized
numerical methods to provide computationally- and memory-efficient analysis
approach on the sparse data. This paper describes the two datasets, describes
an analysis workflow for importing and tagging with the necessary metadata
the individual tile XSIs, and the analysis to obtain reduced-rank, denoised, and
chemically relevant views of the original noisy dataset.
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Intragranular Nanoscale Xe bubbles

Limerick BWR fuel rod of average burnup 
at ~56 MWd/kgU (approximately 5-year 
service in a nuclear power plant reactor). 

Mao, K. S., Gerczak, T. J., Harp, J. M., McKinney, C. S., Lach, T. G., Karakoc, O., ... & Edmondson, 
P. D. (2022). Identifying chemically similar multiphase nanoprecipitates in compositionally complex 
non-equilibrium oxides via machine learning. Communications Materials, 3(1), 1-13.

Presenter Notes
Presentation Notes
200 keV field-emission system equipped with four SDD X-ray detectors providing a total of 0.9 sr of collection.
The proprietary ‘MAPS’ software from Thermo was used to acquire XSIs of size 1024 1024 pixels, all of 4096 energy channels at 10 eV/channel (roughly 0 to 40 keV).
With sizes Un k,  k k where   is a diagonal matrix, and Vm k. The value k is
such that k ≪ n and k ≪ m. Each column of U contains (unfolded) abundance
maps (spatial weightings) of the individual component; each column of V (row
of VT ) contains the associated
Principal component analysis (PCA) is equivilant to SVD, where the scores
^A
and loadings ^S of PCA are obtained by combining   into one of the other
factors, and the eigenvalues of the principal components are just the squares of
the singular values:
These factor-analysis methods suffer an inherent intensity ambiguity, in that
multiplying a column of ^A by a constant and dividing the same column of ^S by
the same constant has no effect on the model. Which is to say, U  = ^A and
VT = ^ST or equally validly, U = ^A and  VT = ^ST .
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Unsupervised ML Improves the Visibility of 
Nanoscale Xe Bubbles at the Grain Boundary 

HBS of the H. B. Robinson PWR fuel rod with average burnup at approximately 72 MWd/kgU.
Mao, K. S., Gerczak, T. J., Harp, J. M., McKinney, C. S., Lach, T. G., Karakoc, O., ... & Edmondson, 
P. D. (2022). Identifying chemically similar multiphase nanoprecipitates in compositionally complex 
non-equilibrium oxides via machine learning. Communications Materials, 3(1), 1-13.
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Materials Informatics–driven Chemistry Analysis on Fission 
Product Metallic Precipitates along the Radial Position

Mao, K. S., Gerczak, T. J., Harp, J. M., McKinney, C. S., Lach, T. G., Karakoc, O., ... & Edmondson, P. D. (2022). Identifying chemically similar 
multiphase nanoprecipitates in compositionally complex non-equilibrium oxides via machine learning. Communications Materials, 3(1), 1-13.

Ternary phase diagram 

PCA

Kleykamp, H., Paschoal, J. O., Pejsa, R. & Thümmler, 
F. Composition and structure of fission product 
precipitates in irradiated oxide fuels: Correlation 
with phase studies in the Mo-Ru-Rh-Pd and BaO-
UO2-ZrO2-MoO2 Systems. J. Nucl. Mater. 130, 426–
433 (1985).

Different with the 
80s prediction!
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Looking at the Nb3Sn Grain Boundary (thin film)

Unsupervised Machine Learning
STEM-EDS at the GB

O

Cu

NbSn

Cu segregation 
at the GB

𝜀𝜀𝑥𝑥𝑥𝑥
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Si Map in the Fiber Center
using ML Processing

0 dpa

44 dpa

Small Si enriched clusters

Near fiber edge

No disordering at low dose
Different Si clusters at 
higher dpa level!

Si 
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Mao, K. S., Massey, C. P., Yamamoto, Y., Unocic, K. A., Gussev, M. N., Zhang, D., ... 
& Edmondson, P. D. (2022). Improved irradiation resistance of accident-tolerant high-
strength FeCrAl alloys with heterogeneous structures. Acta Materialia, 231, 117843.

Accident-Tolerant High-Strength FeCrAl Alloys 
with Heterogeneous Structures
Dislocation loops

Alpha prime precipitates

Deep learning module for dislocation loop  
counting: 500 images within 1 hour.

Improved radiation tolerance 
with strong sinks

Cr content 
with 
heterogeneous 
structure 

7 dpa

>> manual counting 10-20 images per hour

Presenter Notes
Presentation Notes
Significance and Impact
Understand the microstructural evolution trends in FeCrAl alloys & demonstrate the irradiation-induced transition patterns with respect to chemistry, defect sinks and irradiation conditions to optimize such high-strength alloys for extremes.
Scientific achievement  
The initial heterogeneous microstructure enhance the radiation tolerance of advanced FeCrAl alloys.
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Cr-KSTEM-EDS X-ray 
spectrum

Phase Stability & Nanoclustering
FeCrAl (Fe-13Cr-5Al-2Mo) C35M alloy 
neutron irradiated at 7 dpa, 282 °C, 
8.16 x 10-7 dpa/s 

Cr-rich 𝛼𝛼′ precipitates 
Radiation-induced segregation (RIS)

Machine learning (ML) Processing

Atom probe tomography-21 at. % Cr isosurface

30 nm

Grain boundary (GB)

Denuded 
zone

1h map + 
10-min analysis

4h data 
+ 
4-hr 
analysis

Presenter Notes
Presentation Notes
Figure SS1: EDS data showing Cr composition in neutron irradiated C35M alloy at 1.8 dpa at 357 °C at 9.3 x 10-7 dpa/s obtained after Cliff-Lorimer analysis. Figure on the left shows the 1024×1024 image for the composition data with multiple grains and radiation induced segregation at grain boundaries. A smaller window within the grain was chosen for the analysis and reconstruction. Figure on the right shows the image on which the analysis was carried out and the corresponding window in the original image from which the image was taken. Similar procedure was adopted for other compositions as well.
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Chemical Disordering & Amorphization

FeCrAl (Fe-13Cr-5Al-2Mo) C35M alloy neutron irradiated 
at 7 dpa, 282 °C, 8.16 x 10-7 dpa/s. 

Mao, K. S., Massey, C. P., Gussev, M. N., Yamamoto, Y., Nelson, A. T., Field, K. G., 
& Edmondson, P. D. (2021). Irradiation-induced amorphization of Fe-Y-based 
second phase particles in accident-tolerant FeCrAl alloys. Materialia, 15, 101016.

Fe-Y-O amorphization

Machine learning increase 
the confidence of the 
STEM-EDS map. 

Representative ML processed map

Presenter Notes
Presentation Notes
Figure SS1: EDS data showing Cr composition in neutron irradiated C35M alloy at 1.8 dpa at 357 °C at 9.3 x 10-7 dpa/s obtained after Cliff-Lorimer analysis. Figure on the left shows the 1024×1024 image for the composition data with multiple grains and radiation induced segregation at grain boundaries. A smaller window within the grain was chosen for the analysis and reconstruction. Figure on the right shows the image on which the analysis was carried out and the corresponding window in the original image from which the image was taken. Similar procedure was adopted for other compositions as well.
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• Abnormalities in mechanical strength after 
neutron irradiation in C35M.

Unmatched Irradiation Hardening Model

Mao, K. S., Massey, C. P., Yamamoto, Y., Unocic, K. A., 
Gussev, M. N., Zhang, D., ... & Edmondson, P. D. 
(2022). Improved irradiation resistance of accident-
tolerant high-strength FeCrAl alloys with heterogeneous 
structures. Acta Materialia, 231, 117843.
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• Destabilize alpha prime precipitation.

Unmatched Irradiation Hardening model

Mao, K. S., Massey, C. P., Yamamoto, Y., Unocic, K. A., Gussev, M. N., Zhang, D., ... & Edmondson, P. D. (2022). 
Improved irradiation resistance of accident-tolerant high-strength FeCrAl alloys with heterogeneous 
structures. Acta Materialia, 231, 117843.
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Critical Condition for Channel Formation

Cui, Y., Ghoniem, N., & Po, G. (2020). Plasticity of 
Irradiated Materials at the Nano & Micro-Scales. Journal 
of Nuclear Materials, 152746.

Loops only

𝜶𝜶′ precipitates

1.8 dpa, 357 °C

1.8 dpa, 214 °C

More channels

𝟏𝟏𝟏𝟏𝟏𝟏 planes

7 dpa, 282 °C
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HRTEM & STEM EELS 
ORNL Spallation Neutron Source (SNS) 
proton-beam window materials-Inconel 718 
with increased ductility at 10 dpa with He-
related short-range order (SRO) vacancies.

McClintock, D. A., Gussev, M. N., Campbell, C., Mao, K., Lach, T. 
G., Lu, W., ... & Unocic, K. A. (2022). Observations of radiation-
enhanced ductility in irradiated Inconel 718: Tensile properties, 
deformation behavior, and microstructure. Acta Materialia, 231, 
117889.

Presenter Notes
Presentation Notes
Fig. 15. (a) HAADF-STEM reference image of vacancy cluster dense region in a deformed area of specimen CD4-3. (b) Average EELS (black) from the entire SI region marked with the white box in (a), the H and He K-Edges, and the spectral endmembers of a three-component non-negative matrix factorization (NMF) decomposition. (c) HAADF-STEM image obtained during acquisition of SI from box in (a). (d–f) The spatial abundance maps for the NMF decomposition, (f) showing a 13 eV peak (consistent with H) localized to the vacancy cluster. By performing a component separation technique called non-negative matrix factorization (NMF) the dataset can be decomposed into spatial maps of the abundance of spectral endmembers, allowing visualization of subtle localized changes in the low-loss EELS energy range.
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Example 1
Live coding

https://github.com/keyoumao/Defect_dP_PaCKage/blob/main/
STEM_EDS_demonstration_MSE_FAMU_FSU.ipynb
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red-green-blue
‘spectrum’ space, the 
montage would be 
stored into a matrix

Montage
Demonstration

Presenter Notes
Presentation Notes
A cartoon illustration of several specimen features and how overlapping
tiles of a montage would sample them, and how, if stored in red-green-blue
‘spectrum’ space, the montage would be stored into a matrix.
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Large-area EDS on different REBCO tapes

ShanghaiFujikura THEVA

6x9 tiles8x11 tiles 9x13 tiles

By Aztec Montage function



2323 FAMU-FSU COE MagLab 2023 July 12FAMU-FSU
College of Engineering 10.13139/ORNLNCCS/1806276

(a) HAADF (high-angle annular dark field) 
montage of 10 X 10 tiles
from the nanoprecipitate sample. (b) MAADF 
(medium-angle ADF) montage
of 5 X 5 tiles of the aluminum sample.

The “nanoprecipitate” sample was an 
extraction replica from a modified (V-N added)
Grade 91 alloy, produced by wire arc additive 
manufacturing (WAAM), normalized 1100 °C 
for 30 minutes and tempered at 760 °C for 60 
minutes.
Composition was approximately 
Fe-8.4 wt% Cr-0.9Mo-0.3Mn-0.2V-0.1Ni-
0.09C-
0.04N-0.03O.

Large-area
XSI maps

The aluminum alloy, Al-9 wt%Cu-6 wt%Ce
nominally, was fabricated via laser powder bed 
fusion (LPBF) and produced by electropolishing 
a 3 mm conventional TEM disk.

2TB
Example 2

Presenter Notes
Presentation Notes
For instance, the nanoprecipitates datasets were acquired at 1024 1024
pixels  4096 energy channels, meaning there are about 4 billion elements in
each tile. If the data is stored as a single-precision float (4 bytes), then each
tile is 16 Gb of data. For 10 10 tiles, this is 1.6 TB of data. However, the
XSI datasets are sparse: that is, most of the data elements are, in fact, zero
(no counts). Sparsity provides an opportunity to leverage highly optimized
numerical methods to provide computationally- and memory-efficient analysis
approach on the sparse data. This paper describes the two datasets, describes
an analysis workflow for importing and tagging with the necessary metadata
the individual tile XSIs, and the analysis to obtain reduced-rank, denoised, and
chemically relevant views of the original noisy dataset.




2424 FAMU-FSU COE MagLab 2023 July 12FAMU-FSU
College of Engineering

10.13139/ORNLNCCS/
1806276

Fe-8.4 wt% Cr-
0.9Mo-0.3Mn-
0.2V-0.1Ni-
0.09C-0.04N-
0.03O

Example 2

X-ray maps 
extracted from 
the single-tile 
nanoprecipitate 
XSI.
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Re-orthogonalized PCA 
results from a single tile of 
the nanoprecipitate sample

Spatial 
simplicity 
results from 
a single tile 
of the 
nanoprecipita
te dataset. 

Top row are abundance maps, bottom row spectral endmembers 
(offset vertically).



2626 FAMU-FSU COE MagLab 2023 July 12FAMU-FSU
College of Engineering

X-ray maps extracted 
from the single-tile 
aluminum XSI

Spatial simplicity results 
from a single tile of the 
aluminum dataset

𝐷𝐷 = 𝑇𝑇𝑇𝑇 𝑅𝑅−1𝑃𝑃 𝑇𝑇 = �𝑇𝑇 �𝑃𝑃𝑇𝑇
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Eigenvalue vs. component index plot for 
the nanoprecipitate ensemble dataset, 
spectral scaling only.

The first 12 right 
singular values
(spectral endmembers). 

Calculated 
spatial-simplicity 
endmembers of 
ensemble dataset nanoprecipitates

aluminum 

Presenter Notes
Presentation Notes
The orange arrows denote the sixth component, the
last relevant, and the red arrows denote the seventh component, the first nonrelevant.
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The bottom row shows 
false color overlays. 

Panels #0-#5 are the 
abundance maps of the 
endmembers seen in
Previous slide the 
nanoprecipitate dataset. 

M23C6

Ni-rich 
background 
component. 

VX MnS Al-Si-Cr-O

The left overlay
shows the two M23C6
components as 
yellow and blue;

the right overlay shows
the VX, MnS, and Al-Si-
Cr components.

Presenter Notes
Presentation Notes
#0 and #1 are the M23C6 –type carbides. Panel #2 shows the Ni-rich background component. Panel #3 is the
VX-type nanoprecipitate. Panel #4 shows the MnS precipitates. #5 shows the Al-Si-Cr-oxides. 
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Panels #0, #1, #2, and #3 
are the abundance maps of 
the spatial-simplicity 
endmembers
from the aluminum dataset

Matrix
Cu-rich, 
Ce-poor 

aluminum 
oxide Cu-Ce

The arrow denotes a tile 
with low X-ray counts

Presenter Notes
Presentation Notes
Panels #0, #1, #2, and #3 are the abundance maps of the endmembers
seen in Figure 9b from the aluminum dataset. #0 is the matrix, #1
is the Cu-rich, Ce-poor precipitates, #2 aluminum oxide, and #3 the Cu-Ce
precipitates. The final panel is a three-color-mix extract of Abundances #1,
#2, and #3 from the boxed area. The arrow denotes a tile with low X-ray
counts, apparently due to a software bug in the acquisition software.
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http://hyperspy.org/hyperspy-doc/current/index.html
Hyperspy

https://atomai.readthedocs.io/en/latest/
Atomai

https://pycroscopy.github.io/pycroscopy/ecosystem.html
Pycroscopy

https://github.com/keyoumao/ML_FUEL_CM_COMMSMAT
Code for EDS

https://github.com/keyoumao/Defect_dP_PaCKage
Today’s materials

References

https://py4dstem.readthedocs.io/en/latest/index.html
Py4DSTEM

https://docs.opencv.org/4.x/d9/df8/tutorial_root.html
OpenCV
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Spurgeon, S. R., Ophus, C., Jones, L., 
Petford-Long, A., Kalinin, S. V., Olszta, M. J., 
... & Taheri, M. L. (2021). Towards data-driven 
next-generation transmission electron 
microscopy. Nature materials, 20(3), 274-279.

Contributions
• Successful characterization on materials in extreme conditions can be 

accomplished with the aid of modern electron microscopy to understand the 
processing-structure-property relationship.

• A Machine Learning (ML)-enhanced 
approach has been implemented for 
X-ray spectrum image mapping (XSI), 
where this method can facilitate the 
current data acquisition and analysis 
cycle by at least 1 magnitude of order.

• This ML enhanced approach can
be coupled with deep learning and 
other automapping software or 
open-access platform to identify 
nanoclusters with increased
confidence and accuracy. 

Presenter Notes
Presentation Notes
Use my method for applications.
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Aerial view of National MagLab

Sub-Ångström Resolution, World-Leading Analytical Electron 
Microscopy Facility: Analysis at the Atomic Level with Liquid-Cell

State-of-the-art Transmission Electron Microscope

Presenter Notes
Presentation Notes
4D STEM
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Thermo Fisher Scientific Dual Beam Focused Ion Beam/Field Emission 
Scanning Electron Microscope

Helios G4 UC with Oxford detectors 

•FIB: AutoSlice software allows for highest quality, 
fully automated acquisition of multimodal 3D 
datasets.

•EBSD/EDS: Montage, large-area EDS automated 
mapping from Oxford Aztec upgrade. 

•New workstation for the automated analysis on 
spectrum images and 3D reconstruction.

•STEM: Two-segment solid-state STEM detector for 
high-resolution bright and dark field imaging of FIB-
prepared cross sections and critical dimension 
measurements. e.g. dislocation imaging, phase 
contrast mapping. 
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345 nm 2 nm

This state-of-the-art transmission electron microscope is funded by
Florida State University Research Foundation and supported by
National High Magnetic Field Laboratory (funded by National Science
Foundation) and the State of Florida.

To gain access, we welcome interested parties to contact us:

1 Å

Yan Xin, Ph.D.
National Magnetic Field Laboratory
Florida State University

1800 E. Paul Dirac Drive,
Tallahassee, FL 32310
E-mail: xin@magnet.fsu.edu

Sam Mao, Ph.D.
Department of Industrial and Manufacturing
Florida A&M University-Florida State University 
College of Engineering

2525 Pottsdamer St., 
Tallahassee, FL 32310-6046
E-mail: kmao@eng.famu.fsu.edu

New 4D STEM detector will be online!

mailto:xin@magnet.fsu.edu
mailto:kmao@eng.famu.fsu.edu
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