ML methods for Superconducting Materials

Machine Learning Informed Microscopy

Characterization on Defects

g NATIONAL HIGH Sam Mao

AG N E T I C Florida A&M University-Florida State University
College of Engineering

FIELD LABORATORY

Funded by the National Science Foundation (DMR-1644779) and
the State of Florida.

T,
R
%) ‘r
¢ . ENERG
BITES 0%

Zoom Meeting
July12th 2023



Presenter Notes
Presentation Notes
Do not be too nervous, motivate my audience. More excitement.-Add more background and knowledge for the general audience, reduce some slides.
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Presenter Notes
Presentation Notes
Professional microscopist. How to lead and support their projects…The agencies, collaborations/labs I have been worked with. Mention what you have been working with. Using Laser Cursor. I have worked with industry, academia and national labs, multiple materials applications.
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Goal

Upgrade advanced microscopy for materials science characterization from
human approach to machine learning approach.
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a, Effective maximum microscope data-production rates by year, showing the rapid increase associated with better detector technologies. Estimates are constrained by the overhead associated with processing and transfer of data. b, Present and emerging microscopy analysis workflows harnessing new methods of data collection and interpretation.
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Presenter Notes
Presentation Notes
a, Effective maximum microscope data-production rates by year, showing the rapid increase associated with better detector technologies. Estimates are constrained by the overhead associated with processing and transfer of data. b, Present and emerging microscopy analysis workflows harnessing new methods of data collection and interpretation.


Modern Electron Microscopy for High-burnup Fuels
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X-ray mapping in scanning or scanning-transmission electron microscopy (SEM. Poisson-noise-scaled space,
re-orthogonalized factor model-fPCA method

or STEM) using energy dispersive X-ray spectroscopy (EDS) has long been the.        Sparse data-matrix G diagnal
primary tool to examine elemental distributions in materials at the nanometer
to micrometer scale [1, 2]. In the last few years, large-area high-throughput
silicon drift detector (SDD) technology replaced older technologies, allowing
high count rates to be acquired in X-ray mapping [3]. Equally importantly, the
data acquisition paradigm has moved to X-ray spectrum imaging (XSI), where
instead of simply recording maps of intensities of particular X-rays’ intensity
vs position, instead, a full spectrum at each pixel is stored [4, 5, 6, 7]. XSI
provides a rich datacube that is amenable to sophisticated post processing. For
instance, curve fitting could be applied at each pixel to subtract background and
deconvolve overlaps, if signal-to-noise is high enough. More interestingly, data
analytics methods—sometimes called multivariate statistical analysis (MVSA),
data mining, machine learning, etc.—can be applied to the rich data of the XSI,
allowing regions with different elemental makeups to be identified by unbiased
algorithms, often finding details that would be invisible to a human analyst [8,
9, 10].
Automated mapping software, in which large regions can be interrogated
by computer-controlled stage motion to acquire montages of XSIs, is also a
relatively recent advance. Although this provides very large datasets while
maintaining fine pixel pitch, two problems are apparent. One, huge amounts of
data are present, spanning multiple orders of magnitude of spatial scale, and are
difficult for the human analyst to interrogate comprehensively. Second, larger
areas will be mapped by reducing the time per tile (at a constant total time), so
signal to noise may be degraded, which can hide lower-intensity features under
the noise floor.
Here, we combine these two advances: large montages of XSIs are acquired
from two engineering materials, (1) a carbon-extraction replica from
an additively manufactured ferritic-martensitic creep resistant Grade-91 stainless
steel, showing multiple nanoprecipitates populations and (2) an additivelymanufactured
aluminum alloy containing several higher-atomic-number phases.
These montages contain either 10 10 (nanoprecipitate) or 5 5 (aluminum) individual
XSI “tiles.” Therefore, the datasizes of these datasets are in the terabyte
order. For instance, the nanoprecipitates datasets were acquired at 1024 1024
pixels  4096 energy channels, meaning there are about 4 billion elements in
each tile. If the data is stored as a single-precision float (4 bytes), then each
tile is 16 Gb of data. For 10 10 tiles, this is 1.6 Tb of data. However, the
XSI datasets are sparse: that is, most of the data elements are, in fact, zero
(no counts). Sparsity provides an opportunity to leverage highly optimized
numerical methods to provide computationally- and memory-efficient analysis
approach on the sparse data. This paper describes the two datasets, describes
an analysis workflow for importing and tagging with the necessary metadata
the individual tile XSIs, and the analysis to obtain reduced-rank, denoised, and
chemically relevant views of the original noisy dataset.
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non-equilibrium oxides via machine learning. Communications Materials, 3(1), 1-13.
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200 keV field-emission system equipped with four SDD X-ray detectors providing a total of 0.9 sr of collection.
The proprietary ‘MAPS’ software from Thermo was used to acquire XSIs of size 1024 1024 pixels, all of 4096 energy channels at 10 eV/channel (roughly 0 to 40 keV).
With sizes Un k,  k k where   is a diagonal matrix, and Vm k. The value k is
such that k ≪ n and k ≪ m. Each column of U contains (unfolded) abundance
maps (spatial weightings) of the individual component; each column of V (row
of VT ) contains the associated
Principal component analysis (PCA) is equivilant to SVD, where the scores
^A
and loadings ^S of PCA are obtained by combining   into one of the other
factors, and the eigenvalues of the principal components are just the squares of
the singular values:
These factor-analysis methods suffer an inherent intensity ambiguity, in that
multiplying a column of ^A by a constant and dividing the same column of ^S by
the same constant has no effect on the model. Which is to say, U  = ^A and
VT = ^ST or equally validly, U = ^A and  VT = ^ST .



Unsupervised ML Improves the Visibility of
Nanoscale Xe Bubbles at the Grain Boundary
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Materials Informatics-driven Chemistry Analysis on Fission
Product Metallic Precipitates along the Radial Position
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Si Map in the Fiber Center

using ML Processing
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Accident-Tolerant High-Strength FeCrAl Alloys
with Heterogeneous Structures
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Significance and Impact
Understand the microstructural evolution trends in FeCrAl alloys & demonstrate the irradiation-induced transition patterns with respect to chemistry, defect sinks and irradiation conditions to optimize such high-strength alloys for extremes.
Scientific achievement  
The initial heterogeneous microstructure enhance the radiation tolerance of advanced FeCrAl alloys.



Phase Stablllty & Nanoclustering
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Figure SS1: EDS data showing Cr composition in neutron irradiated C35M alloy at 1.8 dpa at 357 °C at 9.3 x 10-7 dpa/s obtained after Cliff-Lorimer analysis. Figure on the left shows the 1024×1024 image for the composition data with multiple grains and radiation induced segregation at grain boundaries. A smaller window within the grain was chosen for the analysis and reconstruction. Figure on the right shows the image on which the analysis was carried out and the corresponding window in the original image from which the image was taken. Similar procedure was adopted for other compositions as well.
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Chemical Disordering & Amorphization
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Presentation Notes
Figure SS1: EDS data showing Cr composition in neutron irradiated C35M alloy at 1.8 dpa at 357 °C at 9.3 x 10-7 dpa/s obtained after Cliff-Lorimer analysis. Figure on the left shows the 1024×1024 image for the composition data with multiple grains and radiation induced segregation at grain boundaries. A smaller window within the grain was chosen for the analysis and reconstruction. Figure on the right shows the image on which the analysis was carried out and the corresponding window in the original image from which the image was taken. Similar procedure was adopted for other compositions as well.
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Fig. 15. (a) HAADF-STEM reference image of vacancy cluster dense region in a deformed area of specimen CD4-3. (b) Average EELS (black) from the entire SI region marked with the white box in (a), the H and He K-Edges, and the spectral endmembers of a three-component non-negative matrix factorization (NMF) decomposition. (c) HAADF-STEM image obtained during acquisition of SI from box in (a). (d–f) The spatial abundance maps for the NMF decomposition, (f) showing a 13 eV peak (consistent with H) localized to the vacancy cluster. By performing a component separation technique called non-negative matrix factorization (NMF) the dataset can be decomposed into spatial maps of the abundance of spectral endmembers, allowing visualization of subtle localized changes in the low-loss EELS energy range.
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represent the isolated and unmixed X-ray signals originating el o 0 @ i T 0 $3eees’s 33°°%330s°
from the supporting carbon film, the shell, and the bimetallic 00?28 oo 22732 ¢ "Se 08¢ 02 seee o

core. The composition of the latter is verified by and is in
excellent agreement with the separate quantification of bare bimetallic seed nanoparticles.

KEYWORDS: ICA, EDX, TEM, electron microscopy, nanoparticle

https://github.com/keyoumao/Defect_dP_PaCKage/blob/main/
STEM_EDS_demonstration_MSE_FAMU_FSU.ipynb



Specimen Tiles

0
20
. > ol
60
80

Montage 0 20 40 60 80

Demonstration

red-green-blue
‘spectrum’ space, the
montage would be
stored into a matrix

o Tiles Stored data
. i? 0 1 2 3
Q

Spectra

2} FAMU-FSU
College of Enginee  _



Presenter Notes
Presentation Notes
A cartoon illustration of several specimen features and how overlapping
tiles of a montage would sample them, and how, if stored in red-green-blue
‘spectrum’ space, the montage would be stored into a matrix.
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(a) HAADF (high-angle annular dark field)
montage of 10 X 10 tiles 21B

from the nanoprecipitate sample. (b) MAADF
(medium-angle ADF) montage

of 8 X 5 tiles of the aluminum sample.

The “nanoprecipitate” sample was an
extraction replica from a modified (V-N added)
Grade 91 alloy, produced by wire arc additive
manufacturing (WAAM), normalized 1100 °C
for 30 minutes and tempered at 760 °C for 60
minutes.

Composition was approximately

The aluminum alloy,

nominally, was fabricated via laser powder bed
fusion (LPBF) and produced by electropolishing
a 3 mm conventional TEM disk.

10.13139/ORNLNCCS/1806276


Presenter Notes
Presentation Notes
For instance, the nanoprecipitates datasets were acquired at 1024 1024
pixels  4096 energy channels, meaning there are about 4 billion elements in
each tile. If the data is stored as a single-precision float (4 bytes), then each
tile is 16 Gb of data. For 10 10 tiles, this is 1.6 TB of data. However, the
XSI datasets are sparse: that is, most of the data elements are, in fact, zero
(no counts). Sparsity provides an opportunity to leverage highly optimized
numerical methods to provide computationally- and memory-efficient analysis
approach on the sparse data. This paper describes the two datasets, describes
an analysis workflow for importing and tagging with the necessary metadata
the individual tile XSIs, and the analysis to obtain reduced-rank, denoised, and
chemically relevant views of the original noisy dataset.
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Presenter Notes
Presentation Notes
The orange arrows denote the sixth component, the
last relevant, and the red arrows denote the seventh component, the first nonrelevant.
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Presenter Notes
Presentation Notes
#0 and #1 are the M23C6 –type carbides. Panel #2 shows the Ni-rich background component. Panel #3 is the
VX-type nanoprecipitate. Panel #4 shows the MnS precipitates. #5 shows the Al-Si-Cr-oxides. 


Matrix

Panels #0, #1, #2, and #3
are the abundance maps of
the spatial-simplicity
endmembers

from the aluminum dataset

aluminum
oxide

Cu-Ce

The arrow denotes a tile
with low X-ray counts


Presenter Notes
Presentation Notes
Panels #0, #1, #2, and #3 are the abundance maps of the endmembers
seen in Figure 9b from the aluminum dataset. #0 is the matrix, #1
is the Cu-rich, Ce-poor precipitates, #2 aluminum oxide, and #3 the Cu-Ce
precipitates. The final panel is a three-color-mix extract of Abundances #1,
#2, and #3 from the boxed area. The arrow denotes a tile with low X-ray
counts, apparently due to a software bug in the acquisition software.
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®
Contributions

« Successful characterization on materials in extreme conditions can be
accomplished with the aid of modern electron microscopy to understand the
processing-structure-property relationship.

Augmented analysis

« A Machine Learning (ML)-enhanced

Integrated O

approach has been implemented for experiment o=+

X-ray spectrum image mapping (XSI), ,  Tia-and-error o

where this method can facilitate the i < 7

current data acquisition and analysis ST s Collect many B

cycle by at least 1 magnitude of order. data streams d §°
N v

* This ML enhanced approach can Sl e s { .:

be coupled with deep learning and — featwre detection

other automapping software or lterative

open-access platform to identify modelexiraction

nanoclusters with increased Spurgeon, S. R., Ophus, C., Jones, L.

confidence and accuracy. 8 Tahor i L (2001 Towards data-diver

e R next-generation transmission electron

BNz FAMU-FSU

J College of Engineering microscopy. Nature materials, 20(3), 274-279.



Presenter Notes
Presentation Notes
Use my method for applications.
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AGNETIC

FIELD LABORATORY

Sub-Angstrom Resolution, World-Leading Analytical Electron
Microscopy Facility: Analysis at the Atomic Level with Liquid-Cell

Aerial view of National MagLab

&Y @" | State-of-the-art Transmission Electron Microscope
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Presentation Notes
4D STEM


Thermo Fisher Scientific Dual Beam Focused lon Beam/Field Emission
Scanning Electron Microscope

Detector sensor
seal (hidden) and lens / fibre-optic
coupling (hidden)

X Phosphor Screen

point Interface flange

Main Detector Body
(includes electronics
and insertion mechanics)

*FIB: AutoSlice software allows for highest quality,
fully automated acquisition of multimodal 3D
datasets.

*EBSD/EDS: Montage, large-area EDS automated
mapping from Oxford Aztec upgrade.

s amazon Hekognition
pa—

*STEM: Two-segment solid-state STEM detector for
high-resolution bright and dark field imaging of FIB-
prepared cross sections and critical dimension
measurements. e.g. dislocation imaging, phase

contrast mapping.



This state-of-the-art transmission electron microscope is funded by
Florida State University Research Foundation and supported by
National High Magnetic Field Laboratory (funded by National Science
Foundation) and the State of Florida.

To gain access, we welcome interested parties to contact us:

Sam Mao, Ph.D. Yan Xin, Ph.D.

Department of Industrial and Manufacturing National Magnetic Field Laboratory
Florida A&M University-Florida State University Florida State University

College of Engineering

2525 Pottsdamer St., 1800 E. Paul Dirac Drive,
Tallahassee, FL 32310-6046 Tallahassee, FL 32310

E-mail: kmao@eng.famu.fsu.edu E-mail: xin@magnet.fsu.edu

New 4D STEM detector will be online!

R R
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