

C3 update

Focused on C3a since the collaboration meeting in March

- C3a the 3-turn subscale practice magnet for C3
- Completed three last layers
 - Layers 5, 6 and 1b
- Assembled the coils
 - Three layers used the C3 prototype wire
- Aiming for cold test in October to provide feedback on
 - magnet fabrication techniques
 - C3 wire performance

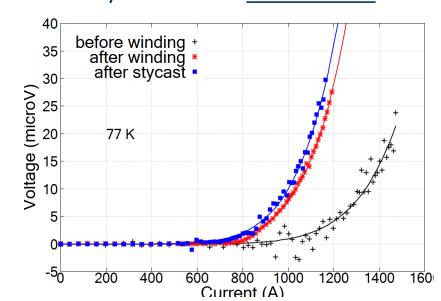
Evolution of the transport performance for individual layers

Normalized to the I_c before winding

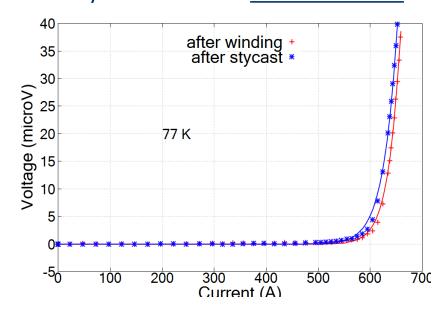
	•				
Layer	Conductor	R _{min} (mm)	Before winding	After winding	After Stycast
1	AP	30	100%	78%	76%
2	AP	35	100%	79%	65%
3	AP	30	100%	82%	80%
4	AP	35	100%	82%	77%
2b	HM	35	100%	73%	72%
5	HM	30	100%	72%	71%
6	AP	35	100%, used Layer 4	81%	79%
1 b	HM	30	100%, used Layer 5	73%	71%

- AP wires 18% 22% I_c reduction after winding; HM wires show a higher reduction 27%
- After painting Stycast, < 3% reduction; two early outliers

The 77 K data suggest that HM and AP wires have similar I_c retention after winding

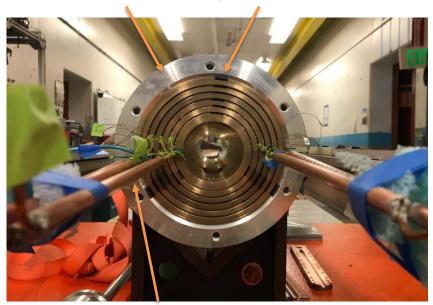

Normalized to the I_c before winding

Layer	Conductor	R _{min} (mm)	Expected from self-field	Measured	Difference
1	AP	30	86%	78%	-8%
2	AP	35	86%	79%	-7%
3	AP	30	87%	82%	-5%
4	AP	35	91%	82%	-9%
2b	HM	35	78%	73%	-5%
5	HM	30	81%	72 %	-9%
6	AP	35	92%	81%	-11%
1 b	HM	30	80%	73%	-7%



Compared to AP wires, HM wires consistently show higher n values after winding, indicating a more uniform I_c among tapes

Layer 1 AP wire. n value: 7 - 8


Layer 1b HM wire. n value: 24 – 27

Assembled all the layers of c3a, the 3-turn version

Al shell Kapton shims


Current leads to be joined

Next few months:

- Fill the radial gaps with Stycast
- Install the end plates
- Join the current leads
- Prepare instrumentations
- Test at 77 and 4.2 K

Status of C3, the 40-turn version

Layer 4 completed

- Mandrels: four done, two to go
- ACT expects to deliver the first C3 wire in September

Questions from the audience

Soren

- Object of the control of the cont
- Ownored with the What's the plan for the CPRD order of the C3 prototype wire?

George

Why I_c degraded after stycast? Do we understand it?