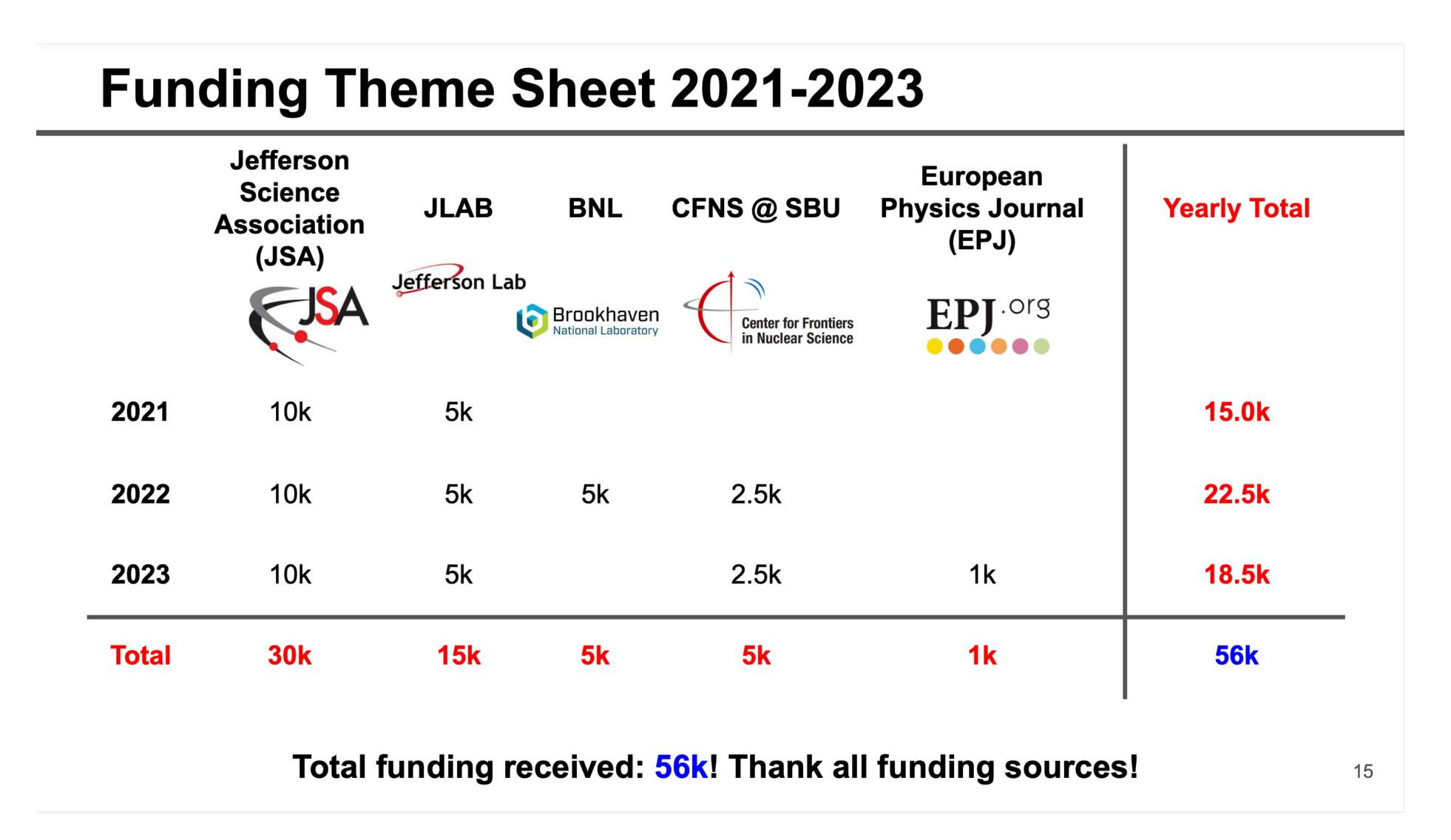
EIC User Group Meeting in Warsaw, Poland — July 23–31, 2023

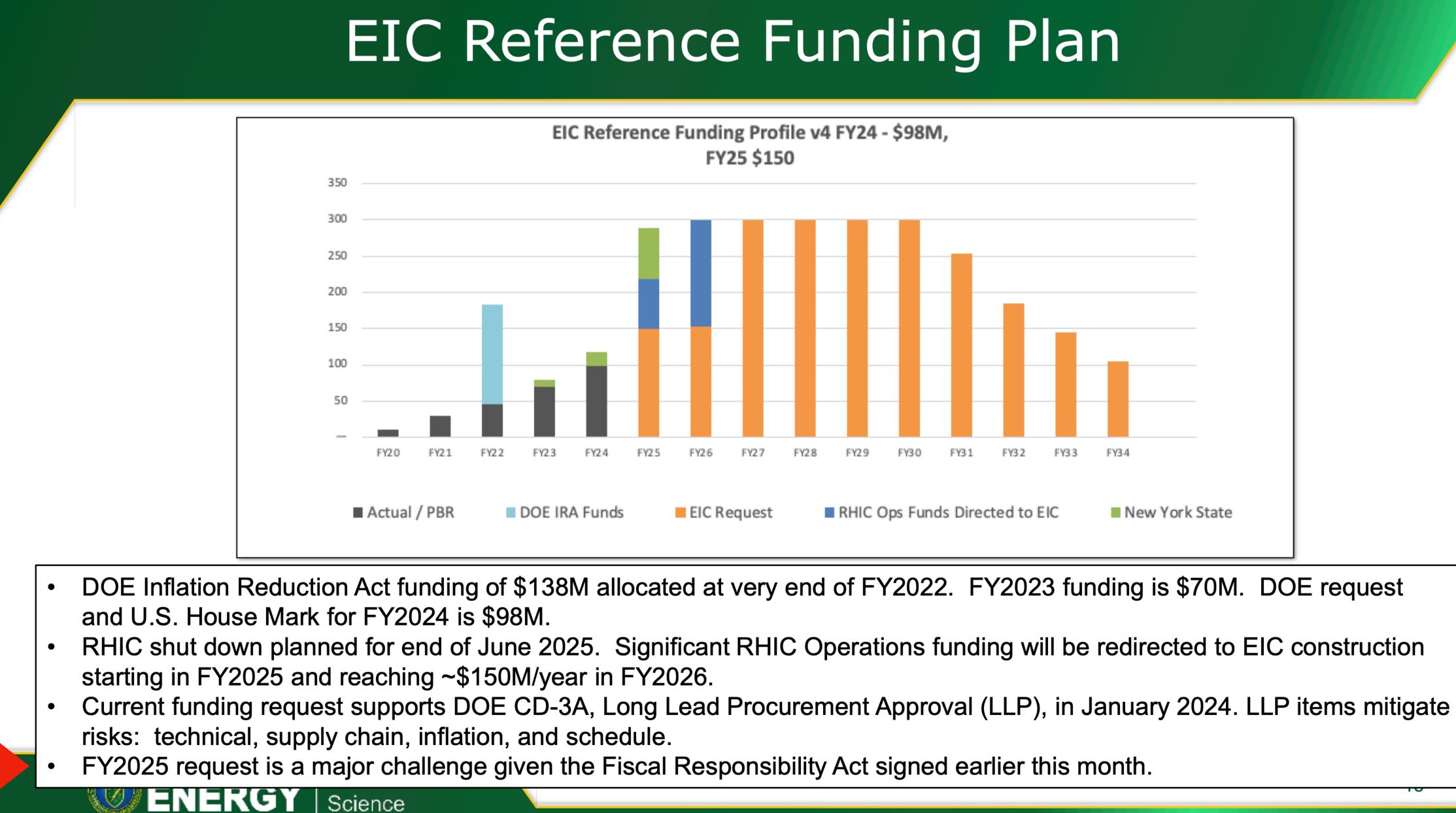
Ernst Sichtermann EIC Local Meeting, August 8, 2023


https://indico.cern.ch/event/1238718/

Thank You!

Very well organized event(s) - e.g. full-time presence of medical professional :-) still no "silver bullet" for remote participation :-(

From: F. Celiberto's summary of the Early-Career workshop during the ePIC collaboration meeting:



The early-career workshop itself certainly had an attractive agenda — invited speakers (Ent, Maas, Forte) and early-career contributors!

Lesson learned: untapped funding potential at BNL?

From: T. Hallman's presentation:

From: J. Yeck's presentation:

Funding and DOE Critical Decisions

- Inflation Reduction Act (IRA) funding of \$138M provided at the end of 2022 supports CD-3A, Long Lead Procurement Approval, plans
- FY2024 funding is expected to be \$98M
- Substantial redirection of funding from RHIC operations into EIC construction starting in 2025
- FY2025 funding will be critical to achieving the CD-2/3 approval schedule
 - Priority is securing CD-2 prior to planned conclusion of RHIC ops in 2025 and the efficient transition from RHIC ops into EIC construction

Electron-Ion Collider

Putting 2 and 2 together: now is not the time to take one's foot off the go pedal; delay will probably be inevitable in ~2y

From: E.C. Aschenauer's presentation:

What Is Coming Up – TDR

We will start the process of writing a draft TDR later this year, and then this will continue towards a first version of a TDR in 2024.

Working model will be similar as we used to create the CDR, Elke/Rolf with engagement of ePIC leadership, and a mix of the project CAMs and EPIC WG representatives. At the late phases the editing rights will become more restricted. We plan to use where we can input from the CDR, YR, proposals, technical notes, etc.

Chapter 2: Physics Goals and Requirements (should be short, < 50 pages) 2.1 EIC Context and History (like CDR 2.2 or YR section 1) 2.2 The Science Goals of the EIC and the Machine Parameters (like CDR 2.3) 2.3 The EIC Science (follow YR structure) 2.4 Scientific Requirements Chapter 3: Interaction Region 6 Overview (Elke/Rolf contributing) Chapter 8: Experimental Systems (can be long such that we can use as standalone detector TDR) 8.1 Experimental Equipment Requirements Summary (like CDR 8.2) 8.2 General Detector Considerations and Operations Challenges (YR 10, CDR 8.3) 8.3 EIC Detector 8.4 Detector R&D Summary 8.5 Detector Integration 8.6 Detector Commissioning and Pre-Operations Chapter 11: Commissioning (Elke/Rolf contributing) Appendix-B: Integration of a Second Experiment (mainly emphasizing feasibility, luminosity sharing, polarization with two experiments, and first-order checks of magnets/acceptance) Electron-Ion Collider 10

Thoughts on and/or lessons learned from the CDR working model?

From: T. Hallman's presentation:

EIC History and Plans

Event

CD-0, Mission Need Approved

DOE Site Selection Announced

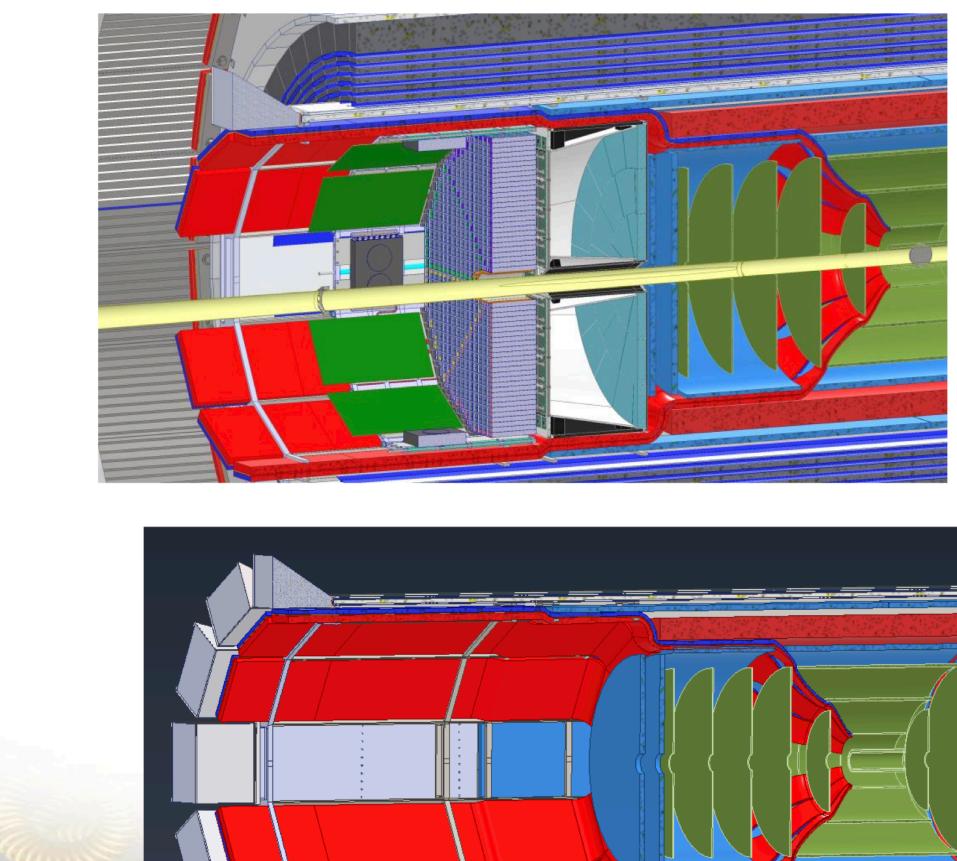
BNL - TJNAF Partnership Agreement

CD-1, Alternative Selection and Cos

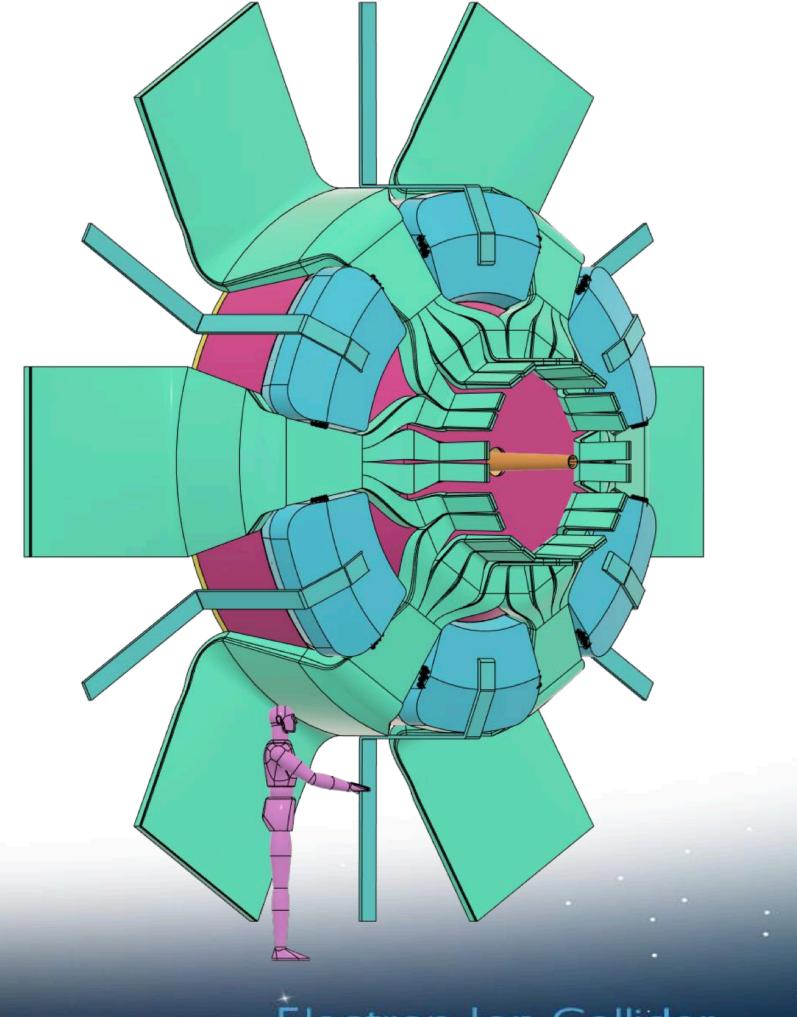
CD-3A, Long Lead Procurement

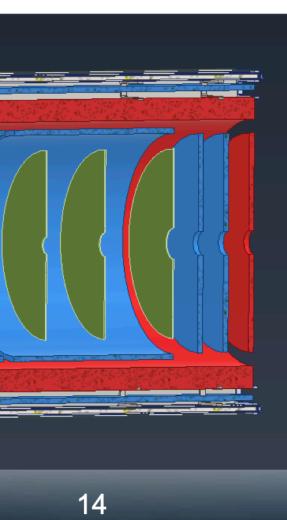
CD-2/3, Performance Baseline/

RHIC Shut Down


Office of Science

	Date
	December 2019
	January 2020
nt Established	May 2020
st Range Approved	June 2021
	January 2024
Construction Start	April 2025
	June 2025


From: R. Wimmer's presentation:


Services Layout and Management

ePIC design is increasingly constrained.

Comments > Manning

Electron-Ion Collider

From: C. Montag's presentation:

Luminosity Sharing with two IRs

- Both electrons and hadrons are at the beam-beam limit with one collision point – they would not "survive" a second IR
- To enable two collision points, both electron and hadron bunch intensity would have to be reduced by a factor two – resulting luminosity at each IR would be factor 4 smaller
- Instead, we modify the fill pattern such that half the bunches collide in IR6, while the other half collides in IR8
- As a result, total luminosity is preserved, and each detector gets half of the total – a maximum 5e33 each instead of 1e34 with a single IR

20

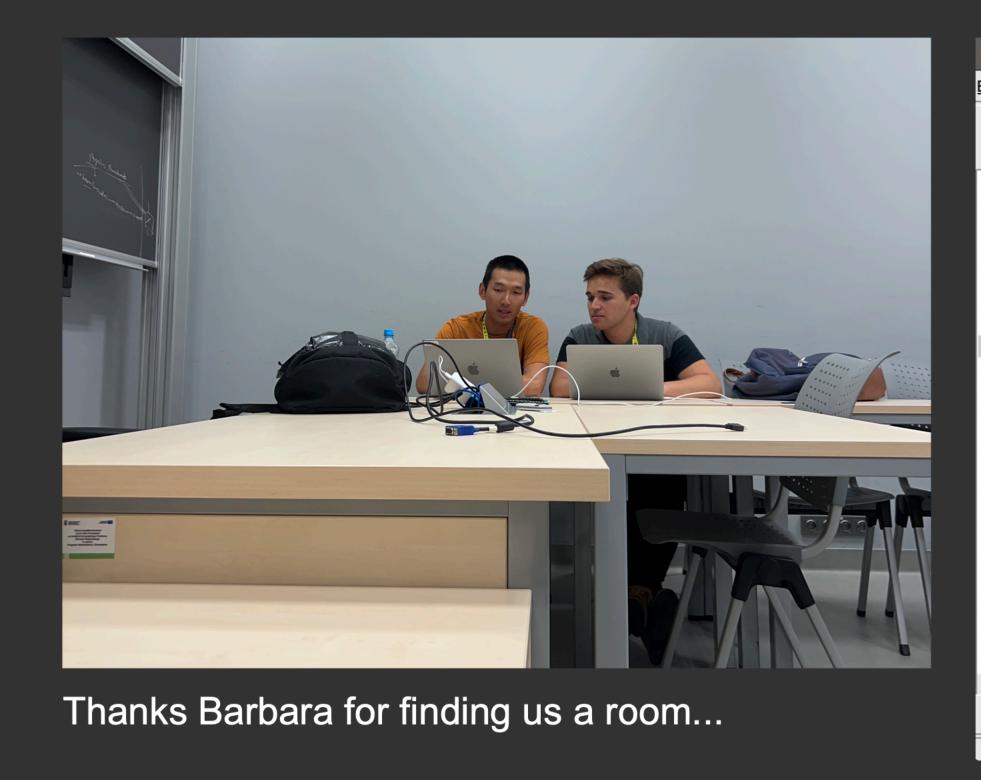
Luminosity sharing isn't obvious (— discussed in better detail by A. Drees in a December 2022 detector-2 workshop imo.)

Electron-Ion Collider

ePIC Collaboration Meeting

Many flavors of summary talks — hopefully a lesson learned going forward...

All you can eat...



From: K. Tu's summary:

ooknaven National Laboratory

ePIC Collaboration Meeting July 2023

Until yesterday... a mini-workfest

Perhaps the biggest value-add is/was in the off-agenda meetings; this was certainly the case for the SVT.

One hour later, full simulation results made.

Scope of the Generic Detector R&D Program

This program will support advanced R&D on innovative, cost-effective detector concepts which reduce risk and that either the one detector in the project scope or a second detector could incorporate. (The term "generic" conveys this duality.) The program is supported through R&D funds provided to Jefferson Lab by the DOE Office of Nuclear Physics, and is open to all segments of the EIC community. It is expected to be funded at an annual level of \$2M, subject to availability of funds from DOE NP.

In a nut-shell:

- **EIC-related R&D**
- Aimed at Detector 2, or upgrades of Detector 1
- Proposals accepted from across the world from universities, laboratories, and companies
- Features of a proposal that add value: reduce risk, cost effective, increase physics scope, innovative, etc

(Also: we need to stay orthogonal to other sources of US federal funding such as EIC project R&D, the SBIR program, etc.)

2023 Submissions

EICGENR&D2023 Proposal Number (1 thru 21)	Title	PI(s)	Institution(s)	Budget Request \$US	Status (New or Otherwise)
1	A Fast Timing MAPS Detector for the EIC	X. Li	LANL	211, 586	New
2	Towards a Few-Degree Calorimeter: bridging the Q ² gap to support the quest for gluon saturation	M. Arratia	UC Riverside	135,000	New
3	Generic glass scintillators for EIC Calorimeters (ScintCalEIC) R&D	T. Horn	CUA	95,333	Continuing
4	Feasibility of Organic Glass Scintillators for EIC ZDC	G. Carini, E. Aschenauer	BNL Instr. Div., BNL Physics Div.	300,000	New
5	Slim Edge for LGADs	G. Giacomini	BNL Instr. Div.	130,000	New
6	Photonics-Based Readout and Power Delivery by Light for Large-Area Monolithic Active Pixel Sensors	S. Mandal, S. Rescia	BNL Instr. Div.	150,000	New
7	R&D for a new concept EIC nucleon polarimeter based on chemical hyperpolarisation	D. P. Watts	U. of York	159,000	New
8	Pressurized RICH	M. Contalbrigo	INFN Ferrara and U. Ferrara	75,000	New
9	Z-Tagging Mini DIRC	C.E. Hyde, Wenliang Li	ODU, SBU and CFNS	117,000	Resubmission
10	Large-Area Monolithic Active Pixel Sensors Combining High Spatial and Temporal Resolution	D. Gorni	BNL Instr. Div.	120,000	New
11	Design, Fabrication and testing of a multi-channel System on a chip for Low-Power High-Density High Timing Precision Readout ASIC for AC- LGADs (HPSoCv3)	L. Macchiarulo, B. Schumm	Nalu Scientific, UC Santa Cruz	221,500	Continuing
12	R&D of 4D Detectors with EICROC and AC-LGAD at EIC consolidating a US- Japan Consortium	P. Tribedy, K. Shigaki	BNL Instr. Div., Hiroshima U.	152,585	New
13	Performance of GridPIX Detector in Magnetic Field with low mass and high efficiency CO2 cooling	T. K. Hemmick, P. Garg	SBU and CFNS, Yale U.	80,193	Continuing
14	Development of High Precision and Eco-friendly MRPC TOF Detector for EIC	Zhenyu Ye, Zhihong Ye	UI at Chicago, Tsinghua U.	120,000	Resubmission
15	Fabrication and characterisation of the Trench Isolated Low Gain Avalanche Detectors for 4D tracking	S. Gardner	U. Glasgow	157,000	New
16	Development of Double-sided Thin-Gap GEM-µRWELL for Tracking at the EIC	K. Gnanvo	Jlab	238,502	Continuing
17	Scintillator Fiber Trackers for the ZDC and off-momentum detectors	C. Ayerbe Gayoso	College of William and Mary	39,500	New
18	Continuation of EIC KLM R&D Proposal	A. Vossen, W. W. Jacobs	Duke U., Indiana U. CEEM	133,000	Continuing
19	Superconducting Nanowire Detectors for the EIC	Sangbaek Lee, W. Armstrong	ANL	60,000	Continuing
20	Development of a Novel Readout Concept for an EIC DIRC	G. Kalicy, J. Schwiening	CUA, GSI	125,000	Continuing

Is this really working in attracting new members into the community?

Saying the Quiet Part Out Loud

What does it mean that the number of proposals dropped from 30 to 20? I estimate that roughly half is what I would call "healthy self pruning", in that

- proposals better suited for the project (but not funded by the project), have not returned.
- proposals effectively asking for operations grants for poorly focused R&D have not returned.
- proposals that were far too expensive for the generic R&D program have not returned.
- a small backlog of proposals of the "one year and done" type have been fed. •

This has to get better. And despite the fact that there are major aspects which Jlab does not control, it will get better.

Is this really working in attracting new members into the community? The new program appears neither better funded nor longer than the previous program, Multi-year ripple effects are a concern.

- The other half is almost certainly funded proposals with multi-year programs who didn't resubmit because they recently got their money.

2023 Submissions: Preliminary Topical Breakdown

Organizing proposals by topic helps make the pile less over-whelming, and helps shepherd us toward a balanced program. Most of the topics below will be perennials, but we may add/drop a few topics from year to year. So far, it looks like I can use the same topics as last year:

Topic	# of proposals submitted	Requested Funds
Calorimetry	4	\$663K
PID (non-TOF)	4	\$397K
Gaseous Precision Timing and/or Tracking	2	\$359K
Front End Electronics	1	\$222K
Silicon Detectors	6	\$710K
Software Supporting Electronics/Detector Design or Physics Program	0	\$OK
"Other New Detectors"	2	\$100K
Studies to Support or Expand the Physics Program	1	\$159K

The proposals can be found at https://www.jlab.org/research/eic_rd_prgm/receivedproposals .

Oversubscription has returned to levels similar to the prior program.