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Thermal runaway criterion as the basis for protection of 

HTS magnets
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A “no-quenching” protection paradigm for HTS magnets

2

➢ Quench protection of HTS-based magnets is difficult owing to a slow quench

propagation velocity in HTS. A normal zone in an HTS magnet can be nearly

stagnant and, thus, quickly heat up to high temperatures, destroying the conductor.

➢ At the same time, growing experimental evidence suggests that HTS conductors can 

operate in a stable dissipative flux flow regime for a substantial range of operational 

currents before entering an irreversible thermal runaway. 

➢ Therefore, a new protection paradigm for HTS magnets has emerged, aiming to

prevent quenching altogether, using advanced diagnostics to detect the onset

of the dissipative regime rather than quenching.
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“Classical” approach to quench protection in LTS magnets
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The temperature of the quenching conductor can be evaluated using a well-established method by

Wilson, equating the net Joule heating integrated over the quench propagation time 𝜏 to the thermal

energy accumulated by the conductor when heated from 𝑇0 to 𝑇𝐻, giving rise to the quench integral in

the form:

where 𝑐(𝑇) is the volumetric heat capacity of the conductor, 𝜌(𝑇) is its normal-state resistivity, 𝑟 is the

superconductor-to-normal stabilizer volumetric ratio, and 𝐽(𝑡) is the current density.

Adiabatic = heat transfer to the environment is neglected

The transition from superconducting (flux pinned) to normal state is assumed to be “abrupt” in time owing to the

very low enthalpy of the normal zone formation in conventional (strongly pinning) superconductor conductors
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I-V characteristics in the flux-flow regime
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HTS conductors could be operated in a range of temperatures and magnetic fields in a flux-flow

state, yet without quenching - owing to a significantly wider operational margin in the field-

temperature plane.

The conductor is constantly dissipating heat in the flux flow

regime. Yet, it may take many seconds to reach 𝑇∗ where

𝐼𝑐(𝑇
∗) = 0, invalidating the adiabatic approximation.

Quench integral approach cannot be used here...

T. Shen, E. Bosque, D. Davis et al. Sci Rep 9, 10170 (2019). Flux flow can be sustained

in low-pinning LTS and HTS

M. Marchevsky et al., Phys. Rev. B 60, pp 14601-14604 
(1999) 
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An alternative approach
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An alternative to using the quench integral is to define the upper boundary of a stable dissipative regime

by considering a dynamic thermal equilibrium between the heat-dissipating HTS conductor and its

environment.

A condition for the dynamic equilibrium:

𝑅𝑠 = 𝐸𝑜𝑙
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As long as this condition can be satisfied for some current 𝐼∗ (and the corresponding 𝑇∗ > 𝑇0), the flux flow

regime is stable, and there is no thermal runaway.

ሶ𝑄𝑖𝑛 𝐼, 𝐵, 𝑇 = ሶ𝑄𝑜𝑢𝑡(𝑇)

This is somewhat analogous to the cryo-stability condition in LTS, except here it describes a large-scale

behavior of the conductor in a superconducting state, not a local normal-zone type of disturbance

𝐸𝑜 = 1mV/cm
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Current-Temperature curves
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Current-temperature curves can be generated, where each point represents a dynamic equilibrium. The 

last point of each graph (encircled) defines the critical surface above which a thermal runaway will occur. 

𝜆 =65 W / K m 𝑛 = 30𝐼𝑐 (T=0) = 500 A

DTDT
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Thermal runaway surface 

(bare HTS, temperature-independent heat transfer coefficient)
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1.7We assume the critical current of the HTS conductor to follow the empirical temperature dependence:
𝑇𝑐 = 85 K  (irreversibility temperature).  

The conductor has 𝐼𝑐0 = 500 A, width 𝑤 = 0.004 m (tape-shaped), and it is separated from thermal reservoir of constant

temperature 𝑇0 on both sides with a barrier of thickness of 𝑑 = 0.01 m made of brass.

Solving the heat balance equation numerically for the current 𝐼∗ and Δ𝑇 = 𝑇∗ − 𝑇0, varying the base temperature 𝑇0, heat transfer 

coefficient 𝜆, and assuming 𝑛 = 20

Δ𝑇 is practically independent on the 𝜆, defined 

by the base temperature 𝑇0
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Case of a stabilized HTS conductor
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In a practical HTS conductor, the superconducting layer can share current with the normal metal (usually copper) stabilizer

and (to a smaller degree) with the metallic substrate (Hastelloy, stainless steel, or similar). As all layers (superconductor,

copper stabilizer, substrate) are electrically connected in parallel, one can express the net resistance of the stabilized

conductor as follows:

We assume the stabilized conductor

cross-section is as follows:

• superconducting layer: 1.3 𝜇m
• copper stabilizer: 50 𝜇m (total)
• substrate: 50 𝜇m

𝑅 𝑇 =
)𝑅𝑠 𝐼𝑥, 𝑇 𝑅𝑠𝑡(𝑇

𝑅𝑠(𝐼𝑥, 𝑇) + 𝑅𝑠𝑡 𝑇

where 𝑅𝑠𝑡 𝑇 =
1

𝑅𝑐𝑢(𝑇)
+

1

𝑅𝑠𝑠(𝑇)

−1
is the net temperature-dependent resistance of the copper and substrate layers

We assume 𝑅𝐶𝑢(𝑇) to follow the known

Gruneisen-Bloch dependence:

𝜌 𝑇 = 𝐴
𝑇
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Where n =5 for simple metals, 𝑄𝑅 ~ 𝑄𝐷 Cu ,
and with the choice of free parameter A

yielding the table room temperature

resistivity value of 𝑅𝐶𝑢 300𝐾 = 1.6x10-8 W m

and 𝑅𝑅𝑅 ~24.

Copper stabilizer

Copper stabilizer

Substrate

HTS
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Calculating current balance
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The resistance of the superconducting layer 𝑅𝑠(𝐼, 𝑇) can be calculated as 𝑅𝑠 = 𝐸𝑜𝑙
𝐼𝑥
𝑛−1

𝐼𝑐(𝑇)𝑛
provided current 𝐼𝑥 carried by the

superconducting layer is known. To find 𝐼𝑥, one can equate voltage across the superconducting layer and the normal metal

since they are electrically connected in parallel, leading to the equation:

𝑈𝑜
𝐼𝑥
𝑛

)𝐼𝑐(𝑇
𝑛
= (𝐼 − 𝐼𝑥)𝑅𝑠𝑡 𝑇

We use the Golden Section search algorithm to solve this equation recursively for each single-point calculation of 𝑅𝑠(𝐼, 𝑇).

I I

Ix

I-Ix
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Thermal runaway surface 

(stabilized HTS, temperature-independent heat transfer coefficient)
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The dependence of the runaway current ratio 𝐼∗/𝐼𝑐(𝑇) and peak temperature difference Δ𝑇 = (𝑇∗ − 𝑇0), plotted 

versus base temperature 𝑇0 and varying (temperature-independent) heat transfer coefficient, assuming 𝑛 = 20. 

In the high-temperature range, where the current can now flow into the stabilizer as 𝐼𝑐(𝑇) drops, a steep up-turn of

the overcurrent is seen.
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Time margin
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Above the thermal runaway surface, the conductor temperature will increase over time and the quench integral method can be 

used to estimate the upper boundary of the interval over which the conductor will heat up to a pre-defined “safe” temperature 

(assuming constant current flowing in the conductor, i.e. no current decay). The final “safe” temperature was taken as 𝑇𝑓 = 300 K.

𝑛 = 20

Having a higher current in the conductor when the thermal runaway criterion is reached translates into a shorter time

needed to reach 𝑇𝑓, and vice versa. As this is an adiabatic approximation, the actual time margins can be longer due to heat

leaking into the environment via the thermal barrier.
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General approach: heat equation
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The general approach to the problem which would include both the time-stable and time-varying solutions for the conductor

temperature, can be attempted by implementing the heat equation with the heat source being the HTS conductor carrying

constant current 𝐼, and iteratively calculating a time-resolved heat diffusion process. In 3D case, the equation has a form:

𝜕𝑇

𝜕𝑡
− 𝛼(𝑇)

𝜕2𝑇

𝜕𝑥2
+
𝜕2𝑇

𝜕𝑦2
+
𝜕2𝑇

𝜕𝑧2
= ሶ𝑄(𝒓, 𝐼, 𝐵 𝑇)

The heat source power ሶ𝑄 is a function of current and temperature; ሶ𝑄 = 𝐼2𝑅 𝐼, 𝐵, 𝑇 , 𝒓 ∈ 𝑉𝒄 and ሶ𝑄 = 0, 𝒓 ∉ 𝑉𝒄 , where 𝑉𝒄
is the conductor volume, and 𝛼(𝑇) is the temperature-dependent thermal diffusivity of the medium material surrounding the 

conductor.

A simplified one-dimensional form of heat equation with no heat source and dimensionless time variable can be written as:

𝜕𝑇

𝜕(𝛼𝑡/𝐿2)
=

𝜕2𝑇

𝜕(𝑥/𝐿)2
where 𝑡𝑑 = 𝐿2/𝛼(𝑇) is the characteristic time for the thermal diffusion across the medium barrier of

length 𝐿.

Complex to solve; needs to be done in 3D

By comparing 𝑡𝑑 with the time margin calculated using the quench integral, one can verify if the adiabatic approximation is 

reasonable for calculating the temperature rise of the conductor above the thermal runaway boundary.

➢ For the 1 cm-thick brass barrier considered in the model, 𝑡𝑑 would vary between ~10 ms at 10 K to ~1 s at 300 K. 
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How to apply this in practice?
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1. Measure  normal state resistivity 𝜌(𝑇) of 

the stabilizer

2. Measure heat transfer coefficient 𝜂(𝑇)
𝑊

𝐾𝑚2

3. Measure 𝐼𝑐(𝑇, 𝐵) and 𝑛(𝑇, 𝐵) of the HTS 

conductor

Thermal runaway model

Tbase

𝑈 𝐼 , 𝑇(𝐼)

𝐼∗,𝑈∗, 𝑇∗ −
Runaway 

current, voltage 

and temperature 
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Experimental
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30 cm

LN2

LN2

Bi-2223 tape conductor (Sumitomo)

1
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IV-curves taken at different temperatures
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No current in the tape IV curves Ic(T) and n(T)

Heat transfer coefficient can be

estimated by powering the

heater at no current in the tape

conductor

Experimental Ic(T) and n(T)

dependences are then interpolated

with a polynomial/liner

dependences to be used by the

model

2 3
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Comparing the model and the experiment
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Base T=77.2 K The runaways model

implemented with the

experimentally measured

conductor parameters

and heat transfer

coefficient shows a very

good agreement with the

experiment.

Simulation can

potentially run “on-the-

fly” in the future to

estimate the expected

runaway value of the

current while actually

ramping the current up.

~115 K2Alt
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Comparing thermal and voltage diagnostics
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Simulated current-voltage and current-temperature

curves for a range of currents below thermal

runaway threshold calculated for 𝑛 = 20, 𝐼𝑐0 = 500 A,

base temperature 𝑇0 = 20 K, and two thermal barrier

thicknesses, 𝑑 = 1 cm and 𝑑 = 10 cm.

The voltage response of the conductor is practically the

same for both cases, as the effect of such a small

temperature rise on the critical current is negligible.

Yet, the onset of the temperature rise is very sensitive to

the thermal barrier. If the barrier thermal conductivity is

sufficiently low, temperature rise can become measurable

earlier than the voltage.
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Based on the present simulations, thermal sensitivity of

the order of 0.1 K or better may be required to reliably

detect heating in the HTS conductor well below the

thermal runaway threshold at liquid nitrogen

temperature, while at temperatures of 5-20 K thermal

sensitivity of the order of 0.5 - 1 K should be sufficient

given the larger expected ΔT.
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Conclusions
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▪ The thermal runaway criterion was explored as a potential basis for realizing the no-quench

protection paradigm for HTS magnets. Basic principles of estimating the stability boundary for a

practical HTS conductor were laid out.

▪ The temperature rise ΔT is only weakly dependent on the heat transfer coefficient or the 𝑛-value, and

mainly defined by the base temperature 𝑇0: lower 𝑇0 leads to a larger ΔT.

▪ Low 𝑛-value conductors allow for a larger fraction of the over-critical current and a larger temperature

increase of the normal zone without experiencing a thermal runaway

▪ A simple practical methodology for thermal runaway-based QD was proposed, and a successful

experimental verification was conducted

▪ Monitoring conductor temperature instead of voltage can be a more reliable QD approach, especially

where heat transfer between the conductor and the thermal bath is poor. We should go forward with

developing more sensitive and practical distributed temperature monitoring techniques!


