Shape and collectivity in ⁸⁰Ge studied via Coulomb excitation

Daniel Rhodes

Postdoctoral Researcher, TRIUMF

13 June 2022

Collectivity in Nuclei

- Track evolution of collectivity and shape along isotopic chains
 - Particularly interesting in unstable nuclei
- Germanium isotopes

72 Se e- capture	⁷³ Se _{β+}	⁷⁴ Se _{2β*}	⁷⁵ Se e- capture	⁷⁶ Se	77 Se Stable	⁷⁸ Se	⁷⁹ Se _{β-}	⁸⁰ Se	⁸¹ <mark>Se</mark>	⁸² <mark>Se</mark> _{2β-}	⁸³ Se β-	⁸⁴ Se
⁷¹ As _{β+}	⁷² As _{β+}	⁷³ As e- capture	⁷⁴ As	⁷⁵ As _{Stable}	⁷⁶ As	⁷⁷ As	⁷⁸ As	⁷⁹ As	⁸⁰ As	⁸¹ As	⁸² As	⁸³ As
⁷⁰ Ge	⁷¹ Ge	⁷² Ge	⁷³ Ge	⁷⁴ Ge	⁷⁵ Ge	⁷⁶ Ge	⁷⁷ Ge	⁷⁸ Ge	⁷⁹ Ge	⁸⁰ Ge	⁸¹ Ge	⁸² Ge
⁶⁹ Ga	⁷⁰ Ga β-	⁷¹ Ga _{Stable}	⁷² Ga β-	⁷³ Ga _{β-}	⁷⁴ Ga _{β-}	⁷⁵ Ga β-	⁷⁶ Ga β-	⁷⁷ Ga _{β-}	⁷⁸ Ga β-	⁷⁹ Ga	⁸⁰ Ga	⁸¹ Ga β-
⁶⁸ Zn	⁶⁹ <mark>Zn</mark> _{β-}	⁷⁰ Zn _{2β-}	⁷¹ Zn β-	⁷² <mark>Ζn</mark>	⁷³ <mark>Ζn</mark>	⁷⁴ <mark>Ζn</mark>	⁷⁵ <mark>Ζn</mark>	⁷⁶ <mark>Ζn</mark>	⁷⁷ <mark>Ζn</mark>	⁷⁸ <mark>Ζn</mark>	⁷⁹ <mark>Ζn</mark>	⁸⁰ Ζn

Nuclear Structure in the Germanium Isotopes

[1] R. Lecomte *et al.*, Phys. Rev. C **22**, 1530 (1980)

[2] D. Ayangeakaa et al., Phys. Lett. B 754, 254 (2016)

Nuclear Structure in the Germanium Isotopes

- Triaxiality Suggested for ⁸⁴⁻⁸⁸Ge [3]
 - Based on low-lying level schemes

Fig. from [3]

Interest in the Germanium Isotopes

- Rich testing ground for nuclear models
- Shell model [4] and beyondmean-field [5] methodologies used

Interest in the Germanium Isotopes

Interest in ⁸⁰Ge

- Recent interest in ⁸⁰Ge due to reported 0^+_2 state below the 2^+_1 [6]
- More recent measurement found no evidence for a first-excited 0⁺ state [7,8]
 - The 0^+_2 state in ⁸⁰Ge has not been located experimentally

Interest in ⁸⁰Ge

Interest in ⁸⁰Ge

- Recent interest in ⁸⁰Ge due to reported 0_2^+ state below the 2_1^+ [6]
- More recent measurement found no evidence for a first-excited 0⁺ state [7,8]
 - The 0^+_2 state in ⁸⁰Ge has not been located experimentally

- Investigate ⁸⁰Ge with Coulomb Excitation
- Goal: Measure $B(E2; 0_1^+ \rightarrow 2_1^+)$ and $Q(2_1^+)$
 - Direct measure of nuclear shapes in neutron-rich Ge isotopes

Coulomb Excitation

- Electromagnetic interaction
 - Restrict bombarding energy [9]
- Observables: Gamma-ray yields vs scattering angle
- Sensitivity to B(E2) values and quadrupole moments
 - Reorientation effect

Experimental Details

- Performed at the NSCL [11] ReA3 [12] facility
 - RIB produced by CCF
- ⁸⁰Ge selected by A1900 [13]
 - Beam thermalized in a gas cell [14]
- Injected into ReA3 linear accelerator
- Delivered to the experimental setup

- 2.52 MeV/u ⁸⁰Ge impinged on ¹⁹⁶Pt
 - 1.59 mg/cm² target
 - Target excitations used for normalization

[11] A. Gade and B. M. Sherill, Phys. Scr. **91**, 053003 (2016)
[13] D. J. Morrissey *et al.*, Nucl. Instrum. Meth. Phys. Res. B **204**, 90 (2003)

[12] A. C. C. Villari *et al.*, IPAC'16 1287

2003) [14] C. S. Sumithrarachchi et al., Nucl. Instrum. Meth. Phys. Res. B **463**, 305 (2020) 11

The JANUS Setup

- Joint Array for Nuclear Structure (JANUS) [15]
 - Low energy Coulomb Excitation
 - Commissioned 2017
 - Particle-γ coincidences
- Segmented Germanium Array (SeGA) for γ-ray detection
- Two silicon detectors for particle detection
 - Reaction target placed between silicon detectors

The Silicon Detectors

- Two annular Si detectors
 - 300 μm thick
 - 1.1 cm and 3.5 cm radii
- 56 segments, 768 pixels
 - 24-fold radial segmentation
 - 32-fold azimuthal segmentation
 - 1 mm x 5 mm pixels
 » 1.5° in θ, 11.3° in φ

[15] E. Lunderberg et al., Nucl. Instrum. and Meth. in Phys. Res. A 885 (2017)

The Segmented Germanium Array

- 16 cylindrical HPGe detector crystals
 - 8 slices
 - 4 quadrants per slice
 - 1 central contact
- Concentrically surround target position

[16] W.F. Mueller *et al.*, Nucl. Instrum. and Meth. in Phys. Res. A 466 (2001)

Experimental Data

GOSIA2 Analysis

- Coulomb excitation codes GOSIA and GOSIA2 [18]
 - Target excitations used for normalization
- Correlation with $\langle 2_1^+ || E2 || 2_1^+ \rangle$ is largest uncertainty on $\langle 0_1^+ || E2 || 2_1^+ \rangle$

2978

⁸⁰Ge

2266

 4^{+}

 6^{+}

GOSIA Analysis

Results in large, highly asymmetric uncertainty

2978

⁸⁰Ge

2266

 4^{+}

 6^{+}

 Precision on (0⁺₁ Previous me (2⁺₁ E2 2⁺₁) mea Matrix elements states also meas 	⁸⁰ Ge 2266 1972	4 ⁺ 3 ⁺	<u>2978</u>	6+			
			Figs. from [17]	1574	2+	1743	4+
Matrix element	This work	Ref. [19]	Ref. [20]	13/4			
$ \begin{array}{c} \langle 0_{1}^{+} \ E2 \ 2_{1}^{+} \rangle \ (\text{eb}) \\ \langle 2_{1}^{+} \ E2 \ 2_{1}^{+} \rangle \ (\text{eb}) \\ \langle 2_{1}^{+} \ E2 \ 4_{1}^{+} \rangle \ (\text{eb}) \end{array} $	$\begin{array}{c} 0.408(10) \\ -0.6^{+4}_{-2} \\ 0.76(20) \end{array}$	0.373(36)	0.316(21)	574	915	1084	- 2+
$ \begin{array}{c} \langle 0_{1}^{+} \ E2 \ 2_{2}^{+} \rangle \text{ (eb)} \\ \langle 2_{1}^{+} \ E2 \ 2_{2}^{+} \rangle \text{ (eb)} \\ \langle 2_{1}^{+} \ M1 \ 2_{2}^{+} \rangle \text{ (mN)} \end{array} $	0.14(5) < 0.8 < 0.5		0.11(2)	- 15		629	<u>y 2</u> ⁺

[17] D. Rhodes *et al.*, Phys. Rev. C **105**, 024325 (2022)
[20] H. Iwasaki *et al.*, Phys. Rev. C 78, 021304(R) (2008)

[19] E. Padilla-Rodal et al., Phys. Rev. Lett. 94, 122501 (2005)

Shell Model Calculations

[17] D. Rhodes *et al.*, Phys. Rev. C **105**, 024325 (2022)
[20] H. Iwasaki *et al.*, Phys. Rev. C 78, 021304(R) (2008)

[19] E. Padilla-Rodal et al., Phys. Rev. Lett. 94, 122501 (2005)

Shell Model Calculations

The Ge Isotopic Chain

- Shell model calculations performed for the ⁷⁰⁻⁸²Ge isotopes
 - Trend of $B(E2; 0_1^+ \rightarrow 2_1^+)$ values reproduced
 - Evolution of collectivity well described
- Q(2⁺₁) values more challenging
 - Calculations predict minimum at ⁸⁰Ge
 - Consistent with current result

The Ge Isotopic Chain

Summary

- The rare-isotope 80Ge was studied via Coulomb excitation at ReA3 facility using the JANUS setup
 - Measured $B(E2; 0_1^+ \to 2_1^+)$ and $Q(2_1^+)$
- Shell model calculations performed for comparison
 - B(E2) values well described along isotopic chain
 - Both theory and experiment point to large $Q(2_1^+)$ in ⁸⁰Ge
 - Symmetric deformation, unlike lighter Ge isotopes
- Results recently published in Physical Review C
 - D. Rhodes et al., Phys. Rev. C 105, 024325 (2022)

Collaborators and Acknowledgements

- Alex Brown ^{a b}
- Alexandra Gade ^{a b}
- S. Biswas ^c
- Aaron Chester ^a
- Peter Farris ^{a b}
- Jack Henderson^d
- Ava Hill ^{a b}
- Jing Li^a
- Frederic Nowacki ^{e f}
- E. Rubino ^a
- Dirk Weisshaar ^a
- Ching-Yen Wu^g

- ^a National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, MI 48824 USA
- ^b Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824, USA
- ^c Paul Scherrer Institue, Forschungsstrasse 111, 5232 Villigen, Switzerland.
- ^d Department of Physics, University of Surrey, Guildford, United Kingdom
- ^e Université de Strasbourg, IPHC, 23 rue du Loess 67037 Strasbourg, France
- ^f CNRS, UMR7178, 67200 Strasbourg, France
- ^g Lawrence Livermore National Laboratory, Livermore, CA 94550, USA

This material is based upon work supported by the U.S. Department of Energy Office of Science under Cooperative Agreement DE-SC0000661, the State of Michigan and Michigan State University. Michigan State University designs and establishes FRIB as a DOE Office of Science National User Facility in support of the mission of the Office of Nuclear Physics.